4,819 research outputs found

    Multi-latin squares

    Get PDF
    A multi-latin square of order nn and index kk is an n×nn\times n array of multisets, each of cardinality kk, such that each symbol from a fixed set of size nn occurs kk times in each row and kk times in each column. A multi-latin square of index kk is also referred to as a kk-latin square. A 11-latin square is equivalent to a latin square, so a multi-latin square can be thought of as a generalization of a latin square. In this note we show that any partially filled-in kk-latin square of order mm embeds in a kk-latin square of order nn, for each n2mn\geq 2m, thus generalizing Evans' Theorem. Exploiting this result, we show that there exist non-separable kk-latin squares of order nn for each nk+2n\geq k+2. We also show that for each n1n\geq 1, there exists some finite value g(n)g(n) such that for all kg(n)k\geq g(n), every kk-latin square of order nn is separable. We discuss the connection between kk-latin squares and related combinatorial objects such as orthogonal arrays, latin parallelepipeds, semi-latin squares and kk-latin trades. We also enumerate and classify kk-latin squares of small orders.Comment: Final version as sent to journa

    Polyhedral Cones of Magic Cubes and Squares

    Full text link
    Using computational algebraic geometry techniques and Hilbert bases of polyhedral cones we derive explicit formulas and generating functions for the number of magic squares and magic cubes.Comment: 14 page

    A note on higher-dimensional magic matrices

    Full text link
    We provide exact and asymptotic formulae for the number of unrestricted, respectively indecomposable, dd-dimensional matrices where the sum of all matrix entries with one coordinate fixed equals 2.Comment: AmS-LaTeX, 9 page

    Affine Constellations Without Mutually Unbiased Counterparts

    Full text link
    It has been conjectured that a complete set of mutually unbiased bases in a space of dimension d exists if and only if there is an affine plane of order d. We introduce affine constellations and compare their existence properties with those of mutually unbiased constellations, mostly in dimension six. The observed discrepancies make a deeper relation between the two existence problems unlikely.Comment: 8 page

    An investigation of SUDOKU-inspired non-linear codes with local constraints

    Get PDF
    Codes with local permutation constraints are described. Belief propagation decoding is shown to require the computation of permanents, and trellis-based methods for computing the permanents are introduced. New insights into the asymptotic performance of such codes are presented. A universal encoder for codes with local constraints is introduced, and simulation results for two code structures, SUDOKU and semi-pandiagonal Latin squares, are presented.This is the author accepted manuscript. The final version is available from IEEE via 10.1109/ISIT.2015.728279

    Combinatorics and Geometry of Transportation Polytopes: An Update

    Full text link
    A transportation polytope consists of all multidimensional arrays or tables of non-negative real numbers that satisfy certain sum conditions on subsets of the entries. They arise naturally in optimization and statistics, and also have interest for discrete mathematics because permutation matrices, latin squares, and magic squares appear naturally as lattice points of these polytopes. In this paper we survey advances on the understanding of the combinatorics and geometry of these polyhedra and include some recent unpublished results on the diameter of graphs of these polytopes. In particular, this is a thirty-year update on the status of a list of open questions last visited in the 1984 book by Yemelichev, Kovalev and Kravtsov and the 1986 survey paper of Vlach.Comment: 35 pages, 13 figure
    corecore