22,471 research outputs found

    Self-Dual and Complementary Dual Abelian Codes over Galois Rings

    Get PDF
    Self-dual and complementary dual cyclic/abelian codes over finite fields form important classes of linear codes that have been extensively studied due to their rich algebraic structures and wide applications. In this paper, abelian codes over Galois rings are studied in terms of the ideals in the group ring GR(pr,s)[G]{\rm GR}(p^r,s)[G], where GG is a finite abelian group and GR(pr,s){\rm GR}(p^r,s) is a Galois ring. Characterizations of self-dual abelian codes have been given together with necessary and sufficient conditions for the existence of a self-dual abelian code in GR(pr,s)[G]{\rm GR}(p^r,s)[G]. A general formula for the number of such self-dual codes is established. In the case where gcd(G,p)=1\gcd(|G|,p)=1, the number of self-dual abelian codes in GR(pr,s)[G]{\rm GR}(p^r,s)[G] is completely and explicitly determined. Applying known results on cyclic codes of length pap^a over GR(p2,s){\rm GR}(p^2,s), an explicit formula for the number of self-dual abelian codes in GR(p2,s)[G]{\rm GR}(p^2,s)[G] are given, where the Sylow pp-subgroup of GG is cyclic. Subsequently, the characterization and enumeration of complementary dual abelian codes in GR(pr,s)[G]{\rm GR}(p^r,s)[G] are established. The analogous results for self-dual and complementary dual cyclic codes over Galois rings are therefore obtained as corollaries.Comment: 22 page
    corecore