12 research outputs found

    The number of directed k-convex polyominoes

    Get PDF
    We present a new method to obtain the generating functions for directed convex polyominoes according to several different statistics including: width, height, size of last column/row and number of corners. This method can be used to study different families of directed convex polyominoes: symmetric polyominoes, parallelogram polyominoes. In this paper, we apply our method to determine the generating function for directed k-convex polyominoes. We show it is a rational function and we study its asymptotic behavior

    Enumeration of polyominoes using Macsyma

    Get PDF
    AbstractThis paper shows the use of a symbolic language, Macsyma, to obtain new exact or asymptotic results in combinatorics. The examples are taken among polyominoes objects. The main purpose is to show how easy it is to bring some methods into operation in order to obtain new results in enumerative combinatorics

    Area limit laws for symmetry classes of staircase polygons

    Full text link
    We derive area limit laws for the various symmetry classes of staircase polygons on the square lattice, in a uniform ensemble where, for fixed perimeter, each polygon occurs with the same probability. This complements a previous study by Leroux and Rassart, where explicit expressions for the area and perimeter generating functions of these classes have been derived.Comment: 18 pages, 3 figure

    Subject Index Volumes 1–200

    Get PDF

    Contributions à l'analyse de figures discrètes en dimension quelconque

    Get PDF
    Les polyominos sont souvent représentés par des mots de quatre lettres ou des mots de changements de direction décrivant leur contour. La combinatoire des mots classique y joue donc un rôle descriptif important, particulièrement dans le choix d'un représentant canonique. Les mots de Lyndon fournissent, de façon naturelle, un tel représentant. Une approche systématique pour le calcul de propriétés des polyominos, basée sur une version originale d'une discrétisation du théorème de Green classique en calcul bivarié, est élaborée. Ceci nous a naturellement amené à analyser les propriétés géométriques d'ensembles du réseau discret de rondeur maximale. Pour une taille donnée, ces ensembles minimisent le moment d'inertie par rapport à un axe passant par leur centre de gravité. Nous introduisons la notion de quasi-disque et montrons entre autres que ces ensembles minimaux sont des poIyominos\ud fortement-convexes. Nous développons également un algorithme permettant de les engendrer systématiquement. Un autre aspect concerne des propriétés sur les contours d'ensembles discrets donnant lieu à une nouvelle démonstration d'un résultat de Daurat et Nivat sur les points dits saillants et rentrants d'un polyomino. Nous présentons également une généralisation de ce résultat aux réseaux hexagonaux et montrons que le résultat est faux pour les autres réseaux semi-réguliers. Nous poursuivons par l'introduction d'opérations de mélange spéciaux sur des mots décrivant des chemins discrets selon la suite de leurs changements de direction. Ces opérations de mélange permettent d'engendrer des courbes fractales du type courbe de dragon et d'analyser\ud certains de leurs invariants. Finalement, une généralisation aux dimensions supérieures des algorithmes précédents basés sur le théorème de Green discret, est présentée. Plus particulièrement, nous développons une version discrète du théorème de Stokes basée sur des familles de poids sur les hypercubes de dimension k dans l'espace discret Zn, k ≤ n. Quelques applications sont également décrites. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Géométrie discrète, Combinatoire des mots, Ensembles discrets, Polyominos, Quasi-disques, Chemins polygonaux, Courbes de dragon, Théorème de Green discret, Théorème de Stokes discret, Algorithmes

    Errata and Addenda to Mathematical Constants

    Full text link
    We humbly and briefly offer corrections and supplements to Mathematical Constants (2003) and Mathematical Constants II (2019), both published by Cambridge University Press. Comments are always welcome.Comment: 162 page
    corecore