2,078 research outputs found

    Green's Relations in Finite Transformation Semigroups

    Get PDF
    We consider the complexity of Green's relations when the semigroup is given by transformations on a finite set. Green's relations can be defined by reachability in the (right/left/two-sided) Cayley graph. The equivalence classes then correspond to the strongly connected components. It is not difficult to show that, in the worst case, the number of equivalence classes is in the same order of magnitude as the number of elements. Another important parameter is the maximal length of a chain of components. Our main contribution is an exponential lower bound for this parameter. There is a simple construction for an arbitrary set of generators. However, the proof for constant alphabet is rather involved. Our results also apply to automata and their syntactic semigroups.Comment: Full version of a paper submitted to CSR 2017 on 2016-12-1

    ad-Nilpotent ideals of a Borel subalgebra II

    Get PDF
    We provide an explicit bijection between the ad-nilpotent ideals of a Borel subalgebra of a simple Lie algebra g and the orbits of \check{Q}/(h+1)\check{Q} under the Weyl group (\check{Q} being the coroot lattice and h the Coxeter number of g). From this result we deduce in a uniform way a counting formula for the ad-nilpotent ideals.Comment: AMS-TeX file, 9 pages; revised version. To appear in Journal of Algebr

    Uniformity, Universality, and Computability Theory

    Full text link
    We prove a number of results motivated by global questions of uniformity in computability theory, and universality of countable Borel equivalence relations. Our main technical tool is a game for constructing functions on free products of countable groups. We begin by investigating the notion of uniform universality, first proposed by Montalb\'an, Reimann and Slaman. This notion is a strengthened form of a countable Borel equivalence relation being universal, which we conjecture is equivalent to the usual notion. With this additional uniformity hypothesis, we can answer many questions concerning how countable groups, probability measures, the subset relation, and increasing unions interact with universality. For many natural classes of countable Borel equivalence relations, we can also classify exactly which are uniformly universal. We also show the existence of refinements of Martin's ultrafilter on Turing invariant Borel sets to the invariant Borel sets of equivalence relations that are much finer than Turing equivalence. For example, we construct such an ultrafilter for the orbit equivalence relation of the shift action of the free group on countably many generators. These ultrafilters imply a number of structural properties for these equivalence relations.Comment: 61 Page

    The subgroup identification problem for finitely presented groups

    Full text link
    We introduce the subgroup identification problem, and show that there is a finitely presented group G for which it is unsolvable, and that it is uniformly solvable in the class of finitely presented locally Hopfian groups. This is done as an investigation into the difference between strong and weak effective coherence for finitely presented groups.Comment: 11 pages. This is the version submitted for publicatio

    Dynamical systems associated to separated graphs, graph algebras, and paradoxical decompositions

    Full text link
    We attach to each finite bipartite separated graph (E,C) a partial dynamical system (\Omega(E,C), F, \theta), where \Omega(E,C) is a zero-dimensional metrizable compact space, F is a finitely generated free group, and {\theta} is a continuous partial action of F on \Omega(E,C). The full crossed product C*-algebra O(E,C) = C(\Omega(E,C)) \rtimes_{\theta} F is shown to be a canonical quotient of the graph C*-algebra C^*(E,C) of the separated graph (E,C). Similarly, we prove that, for any *-field K, the algebraic crossed product L^{ab}_K(E,C) = C_K(\Omega(E,C)) \rtimes_\theta^{alg} F is a canonical quotient of the Leavitt path algebra L_K(E,C) of (E,C). The monoid V(L^{ab}_K(E,C)) of isomorphism classes of finitely generated projective modules over L^{ab}_K(E,C) is explicitly computed in terms of monoids associated to a canonical sequence of separated graphs. Using this, we are able to construct an action of a finitely generated free group F on a zero-dimensional metrizable compact space Z such that the type semigroup S(Z, F, K) is not almost unperforated, where K denotes the algebra of clopen subsets of Z. Finally we obtain a characterization of the separated graphs (E,C) such that the canonical partial action of F on \Omega(E,C) is topologically free.Comment: Final version to appear in Advances in Mathematic
    • …
    corecore