102 research outputs found

    Enumeration of perfect matchings of a type of quadratic lattice on the torus

    Get PDF
    NSFC [10831001]A quadrilateral cylinder of length m and breadth n is the Cartesian product of a m-cycle(with m vertices) and a n-path(with n vertices). Write the vertices of the two cycles on the boundary of the quadrilateral cylinder as x(1), x(2), ... , x(m) and y(1), y(2), ... , y(m), respectively, where x(i) corresponds to y(i) (i = 1, 2, ..., m). We denote by Q(m,n,r), the graph obtained from quadrilateral cylinder of length m and breadth n by adding edges x(i)y(i+r) (r is a integer, 0 <= r < m and i + r is modulo m). Kasteleyn had derived explicit expressions of the number of perfect matchings for Q(m,n,0) [P.W. Kasteleyn, The statistics of dimers on a lattice I: The number of dimer arrangements on a quadratic lattice, Physica 27(1961), 1209-1225]. In this paper, we generalize the result of Kasteleyn, and obtain expressions of the number of perfect matchings for Q(m,n,r) by enumerating Pfaffians

    Enumeration of Matchings: Problems and Progress

    Full text link
    This document is built around a list of thirty-two problems in enumeration of matchings, the first twenty of which were presented in a lecture at MSRI in the fall of 1996. I begin with a capsule history of the topic of enumeration of matchings. The twenty original problems, with commentary, comprise the bulk of the article. I give an account of the progress that has been made on these problems as of this writing, and include pointers to both the printed and on-line literature; roughly half of the original twenty problems were solved by participants in the MSRI Workshop on Combinatorics, their students, and others, between 1996 and 1999. The article concludes with a dozen new open problems. (Note: This article supersedes math.CO/9801060 and math.CO/9801061.)Comment: 1+37 pages; to appear in "New Perspectives in Geometric Combinatorics" (ed. by Billera, Bjorner, Green, Simeon, and Stanley), Mathematical Science Research Institute publication #37, Cambridge University Press, 199

    Integrability on the Master Space

    Full text link
    It has been recently shown that every SCFT living on D3 branes at a toric Calabi-Yau singularity surprisingly also describes a complete integrable system. In this paper we use the Master Space as a bridge between the integrable system and the underlying field theory and we reinterpret the Poisson manifold of the integrable system in term of the geometry of the field theory moduli space.Comment: 47 pages, 20 figures, using jheppub.st

    A generalized Kac-Ward formula

    Full text link
    The Kac-Ward formula allows to compute the Ising partition function on a planar graph G with straight edges from the determinant of a matrix of size 2N, where N denotes the number of edges of G. In this paper, we extend this formula to any finite graph: the partition function can be written as an alternating sum of the determinants of 2^{2g} matrices of size 2N, where g is the genus of an orientable surface in which G embeds. We give two proofs of this generalized formula. The first one is purely combinatorial, while the second relies on the Fisher-Kasteleyn reduction of the Ising model to the dimer model, and on geometric techniques. As a consequence of this second proof, we also obtain the following fact: the Kac-Ward and the Fisher-Kasteleyn methods to solve the Ising model are one and the same.Comment: 23 pages, 8 figures; minor corrections in v2; to appear in J. Stat. Mech. Theory Ex

    Master index of volumes 61–70

    Get PDF
    • …
    corecore