5,269 research outputs found

    The arctic curve of the domain-wall six-vertex model

    Full text link
    The problem of the form of the `arctic' curve of the six-vertex model with domain wall boundary conditions in its disordered regime is addressed. It is well-known that in the scaling limit the model exhibits phase-separation, with regions of order and disorder sharply separated by a smooth curve, called the arctic curve. To find this curve, we study a multiple integral representation for the emptiness formation probability, a correlation function devised to detect spatial transition from order to disorder. We conjecture that the arctic curve, for arbitrary choice of the vertex weights, can be characterized by the condition of condensation of almost all roots of the corresponding saddle-point equations at the same, known, value. In explicit calculations we restrict to the disordered regime for which we have been able to compute the scaling limit of certain generating function entering the saddle-point equations. The arctic curve is obtained in parametric form and appears to be a non-algebraic curve in general; it turns into an algebraic one in the so-called root-of-unity cases. The arctic curve is also discussed in application to the limit shape of qq-enumerated (with 0<q40<q\leq 4) large alternating sign matrices. In particular, as q0q\to 0 the limit shape tends to a nontrivial limiting curve, given by a relatively simple equation.Comment: 39 pages, 2 figures; minor correction

    Integrability of graph combinatorics via random walks and heaps of dimers

    Full text link
    We investigate the integrability of the discrete non-linear equation governing the dependence on geodesic distance of planar graphs with inner vertices of even valences. This equation follows from a bijection between graphs and blossom trees and is expressed in terms of generating functions for random walks. We construct explicitly an infinite set of conserved quantities for this equation, also involving suitable combinations of random walk generating functions. The proof of their conservation, i.e. their eventual independence on the geodesic distance, relies on the connection between random walks and heaps of dimers. The values of the conserved quantities are identified with generating functions for graphs with fixed numbers of external legs. Alternative equivalent choices for the set of conserved quantities are also discussed and some applications are presented.Comment: 38 pages, 15 figures, uses epsf, lanlmac and hyperbasic

    Asymptotic formulas for stacks and unimodal sequences

    Full text link
    We study enumeration functions for unimodal sequences of positive integers, where the size of a sequence is the sum of its terms. We survey known results for a number of natural variants of unimodal sequences, including Auluck's generalized Ferrer diagrams, Wright's stacks, and Andrews' convex compositions. These results describe combinatorial properties, generating functions, and asymptotic formulas for the enumeration functions. We also prove several new asymptotic results that fill in the notable missing cases from the literature, including an open problem in statistical mechanics due to Temperley. Furthermore, we explain the combinatorial and asymptotic relationship between partitions, Andrews' Frobenius symbols, and stacks with summits.Comment: 19 pages, 4 figure

    Generic method for bijections between blossoming trees and planar maps

    Full text link
    This article presents a unified bijective scheme between planar maps and blossoming trees, where a blossoming tree is defined as a spanning tree of the map decorated with some dangling half-edges that enable to reconstruct its faces. Our method generalizes a previous construction of Bernardi by loosening its conditions of applications so as to include annular maps, that is maps embedded in the plane with a root face different from the outer face. The bijective construction presented here relies deeply on the theory of \alpha-orientations introduced by Felsner, and in particular on the existence of minimal and accessible orientations. Since most of the families of maps can be characterized by such orientations, our generic bijective method is proved to capture as special cases all previously known bijections involving blossoming trees: for example Eulerian maps, m-Eulerian maps, non separable maps and simple triangulations and quadrangulations of a k-gon. Moreover, it also permits to obtain new bijective constructions for bipolar orientations and d-angulations of girth d of a k-gon. As for applications, each specialization of the construction translates into enumerative by-products, either via a closed formula or via a recursive computational scheme. Besides, for every family of maps described in the paper, the construction can be implemented in linear time. It yields thus an effective way to encode and generate planar maps. In a recent work, Bernardi and Fusy introduced another unified bijective scheme, we adopt here a different strategy which allows us to capture different bijections. These two approaches should be seen as two complementary ways of unifying bijections between planar maps and decorated trees.Comment: 45 pages, comments welcom

    Planar maps as labeled mobiles

    Full text link
    We extend Schaeffer's bijection between rooted quadrangulations and well-labeled trees to the general case of Eulerian planar maps with prescribed face valences, to obtain a bijection with a new class of labeled trees, which we call mobiles. Our bijection covers all the classes of maps previously enumerated by either the two-matrix model used by physicists or by the bijection with blossom trees used by combinatorists. Our bijection reduces the enumeration of maps to that, much simpler, of mobiles and moreover keeps track of the geodesic distance within the initial maps via the mobiles' labels. Generating functions for mobiles are shown to obey systems of algebraic recursion relations.Comment: 31 pages, 17 figures, tex, lanlmac, epsf; improved tex

    Asymptotic enumeration and limit laws for graphs of fixed genus

    Full text link
    It is shown that the number of labelled graphs with n vertices that can be embedded in the orientable surface S_g of genus g grows asymptotically like c(g)n5(g1)/21γnn!c^{(g)}n^{5(g-1)/2-1}\gamma^n n! where c(g)>0c^{(g)}>0, and γ27.23\gamma \approx 27.23 is the exponential growth rate of planar graphs. This generalizes the result for the planar case g=0, obtained by Gimenez and Noy. An analogous result for non-orientable surfaces is obtained. In addition, it is proved that several parameters of interest behave asymptotically as in the planar case. It follows, in particular, that a random graph embeddable in S_g has a unique 2-connected component of linear size with high probability
    corecore