29 research outputs found

    Enumeration of m-ary cacti

    Get PDF
    The purpose of this paper is to enumerate various classes of cyclically colored m-gonal plane cacti, called m-ary cacti. This combinatorial problem is motivated by the topological classification of complex polynomials having at most m critical values, studied by Zvonkin and others. We obtain explicit formulae for both labelled and unlabelled m-ary cacti, according to i) the number of polygons, ii) the vertex-color distribution, iii) the vertex-degree distribution of each color. We also enumerate m-ary cacti according to the order of their automorphism group. Using a generalization of Otter's formula, we express the species of m-ary cacti in terms of rooted and of pointed cacti. A variant of the m-dimensional Lagrange inversion is then used to enumerate these structures. The method of Liskovets for the enumeration of unrooted planar maps can also be adapted to m-ary cacti.Comment: LaTeX2e, 28 pages, 9 figures (eps), 3 table

    A bijection for plane graphs and its applications

    No full text
    International audienceThis paper is concerned with the counting and random sampling of plane graphs (simple planar graphs embedded in the plane). Our main result is a bijection between the class of plane graphs with triangular outer face, and a class of oriented binary trees. The number of edges and vertices of the plane graph can be tracked through the bijection. Consequently, we obtain counting formulas and an efficient random sampling algorithm for rooted plane graphs (with arbitrary outer face) according to the number of edges and vertices. We also obtain a bijective link, via a bijection of Bona, between rooted plane graphs and 1342-avoiding permutations. 1 Introduction A planar graph is a graph that can be embedded in the plane (drawn in the plane without edge crossing). A pla-nar map is an embedding of a connected planar graph considered up to deformation. The enumeration of pla-nar maps has been the subject of intense study since the seminal work of Tutte in the 60's [20] showing that many families of planar maps have beautiful counting formulas. Starting with the work of Cori and Vauquelin [10] and then Schaeffer [18, 19], bijective constructions have been discovered that provide more transparent proofs of such formulas. The enumeration of planar graphs has also been the focus of a lot of efforts, culminating with the asymptotic counting formulas obtained by Giménez and Noy [16]. In this paper we focus on simple planar maps (planar maps without loops nor multiple edges), which are also called plane graphs. This family of planar maps has, quite surprisingly, not been considered until fairly recently. This is probably due to the fact that loops and multiple edges are typically allowed in studies about planar maps, whereas they are usually forbidden in studies about planar graphs. At any rate, the first result about plane graphs was an exact algebraic expressio

    Statistics of planar graphs viewed from a vertex: A study via labeled trees

    Full text link
    We study the statistics of edges and vertices in the vicinity of a reference vertex (origin) within random planar quadrangulations and Eulerian triangulations. Exact generating functions are obtained for theses graphs with fixed numbers of edges and vertices at given geodesic distances from the origin. Our analysis relies on bijections with labeled trees, in which the labels encode the information on the geodesic distance from the origin. In the case of infinitely large graphs, we give in particular explicit formulas for the probabilities that the origin have given numbers of neighboring edges and/or vertices, as well as explicit values for the corresponding moments.Comment: 36 pages, 15 figures, tex, harvmac, eps

    An extensive English language bibliography on graph theory and its applications

    Get PDF
    Bibliography on graph theory and its application

    On the expected number of perfect matchings in cubic planar graphs

    Get PDF
    A well-known conjecture by Lov'asz and Plummer from the 1970s asserted that a bridgeless cubic graph has exponentially many perfect matchings. It was solved in the affirmative by Esperet et al. ([13]). On the other hand, Chudnovsky and Seymour ([8]) proved the conjecture in the special case of cubic planar graphs. In our work we consider random bridgeless cubic planar graphs with the uniform distribution on graphs with n vertices. Under this model we show that the expected number of perfect matchings in labeled bridgeless cubic planar graphs is asymptotically cγn, where c > 0 and γ ∼ 1.14196 is an explicit algebraic number. We also compute the expected number of perfect matchings in (not necessarily bridgeless) cubic planar graphs and provide lower bounds for unlabeled graphs. Our starting point is a correspondence between counting perfect matchings in rooted cubic planar maps and the partition function of the Ising model in rooted triangulations

    Tropical Positivity and Semialgebraic Sets from Polytopes

    Get PDF
    This dissertation presents recent contributions in tropical geometry with a view towards positivity, and on certain semialgebraic sets which are constructed from polytopes. Tropical geometry is an emerging field in mathematics, combining elements of algebraic geometry and polyhedral geometry. A key in establishing this bridge is the concept of tropicalization, which is often described as mapping an algebraic variety to its 'combinatorial shadow'. This shadow is a polyhedral complex and thus allows to study the algebraic variety by combinatorial means. Recently, the positive part, i.e. the intersection of the variety with the positive orthant, has enjoyed rising attention. A driving question in recent years is: Can we characterize the tropicalization of the positive part? In this thesis we introduce the novel notion of positive-tropical generators, a concept which may serve as a tool for studying positive parts in tropical geometry in a combinatorial fashion. We initiate the study of these as positive analogues of tropical bases, and extend our theory to the notion of signed-tropical generators for more general signed tropicalizations. Applying this to the tropicalization of determinantal varieties, we develop criteria for characterizing their positive part. Motivated by questions from optimization, we focus on the study of low-rank matrices, in particular matrices of rank 2 and 3. We show that in rank 2 the minors form a set of positive-tropical generators, which fully classifies the positive part. In rank 3 we develop the starship criterion, a geometric criterion which certifies non-positivity. Moreover, in the case of square-matrices of corank 1, we fully classify the signed tropicalization of the determinantal variety, even beyond the positive part. Afterwards, we turn to the study of polytropes, which are those polytopes that are both tropically and classically convex. In the literature they are also established as alcoved polytopes of type A. We describe methods from toric geometry for computing multivariate versions of volume, Ehrhart and h^*-polynomials of lattice polytropes. These algorithms are applied to all polytropes of dimensions 2,3 and 4, yielding a large class of integer polynomials. We give a complete combinatorial description of the coefficients of volume polynomials of 3-dimensional polytropes in terms of regular central subdivisions of the fundamental polytope, which is the root polytope of type A. Finally, we provide a partial characterization of the analogous coefficients in dimension 4. In the second half of the thesis, we shift the focus to study semialgebraic sets by combinatorial means. Intersection bodies are objects arising in geometric tomography and are known not to be semialgebraic in general. We study intersection bodies of polytopes and show that such an intersection body is always a semialgebraic set. Computing the irreducible components of the algebraic boundary, we provide an upper bound for the degree of these components. Furthermore, we give a full classification for the convexity of intersection bodies of polytopes in the plane. Towards the end of this thesis, we move to the study of a problem from game theory, considering the correlated equilibrium polytope PGP_G of a game G from a combinatorial point of view. We introduce the region of full-dimensionality for this class of polytopes, and prove that it is a semialgebraic set for any game. Through the use of oriented matroid strata, we propose a structured method for classifying the possible combinatorial types of PGP_G, and show that for (2 x n)-games, the algebraic boundary of each stratum is a union of coordinate hyperplanes and binomial hypersurfaces. Finally, we provide a computational proof that there exists a unique combinatorial type of maximal dimension for (2 x 3)-games.:Introduction 1. Background 2. Tropical Positivity and Determinantal Varieties 3. Multivariate Volume, Ehrhart, and h^*-Polynomials of Polytropes 4. Combinatorics of Correlated Equilibri

    On computing Belyi maps

    Get PDF
    We survey methods to compute three-point branched covers of the projective line, also known as Belyi maps. These methods include a direct approach, involving the solution of a system of polynomial equations, as well as complex analytic methods, modular forms methods, and p-adic methods. Along the way, we pose several questions and provide numerous examples.Comment: 57 pages, 3 figures, extensive bibliography; English and French abstract; revised according to referee's suggestion
    corecore