4,019 research outputs found

    On the enumeration of tanglegrams and tangled chains

    Full text link
    Tanglegrams are a special class of graphs appearing in applications concerning cospeciation and coevolution in biology and computer science. They are formed by identifying the leaves of two rooted binary trees. We give an explicit formula to count the number of distinct binary rooted tanglegrams with nn matched vertices, along with a simple asymptotic formula and an algorithm for choosing a tanglegram uniformly at random. The enumeration formula is then extended to count the number of tangled chains of binary trees of any length. This includes a new formula for the number of binary trees with nn leaves. We also give a conjecture for the expected number of cherries in a large randomly chosen binary tree and an extension of this conjecture to other types of trees

    Clusters, generating functions and asymptotics for consecutive patterns in permutations

    Get PDF
    We use the cluster method to enumerate permutations avoiding consecutive patterns. We reprove and generalize in a unified way several known results and obtain new ones, including some patterns of length 4 and 5, as well as some infinite families of patterns of a given shape. By enumerating linear extensions of certain posets, we find a differential equation satisfied by the inverse of the exponential generating function counting occurrences of the pattern. We prove that for a large class of patterns, this inverse is always an entire function. We also complete the classification of consecutive patterns of length up to 6 into equivalence classes, proving a conjecture of Nakamura. Finally, we show that the monotone pattern asymptotically dominates (in the sense that it is easiest to avoid) all non-overlapping patterns of the same length, thus proving a conjecture of Elizalde and Noy for a positive fraction of all patterns

    Generating Permutations with Restricted Containers

    Get PDF
    We investigate a generalization of stacks that we call C\mathcal{C}-machines. We show how this viewpoint rapidly leads to functional equations for the classes of permutations that C\mathcal{C}-machines generate, and how these systems of functional equations can frequently be solved by either the kernel method or, much more easily, by guessing and checking. General results about the rationality, algebraicity, and the existence of Wilfian formulas for some classes generated by C\mathcal{C}-machines are given. We also draw attention to some relatively small permutation classes which, although we can generate thousands of terms of their enumerations, seem to not have D-finite generating functions
    corecore