1,284 research outputs found

    Optimising a nonlinear utility function in multi-objective integer programming

    Get PDF
    In this paper we develop an algorithm to optimise a nonlinear utility function of multiple objectives over the integer efficient set. Our approach is based on identifying and updating bounds on the individual objectives as well as the optimal utility value. This is done using already known solutions, linear programming relaxations, utility function inversion, and integer programming. We develop a general optimisation algorithm for use with k objectives, and we illustrate our approach using a tri-objective integer programming problem.Comment: 11 pages, 2 tables; v3: minor revisions, to appear in Journal of Global Optimizatio

    On the representation of the search region in multi-objective optimization

    Full text link
    Given a finite set NN of feasible points of a multi-objective optimization (MOO) problem, the search region corresponds to the part of the objective space containing all the points that are not dominated by any point of NN, i.e. the part of the objective space which may contain further nondominated points. In this paper, we consider a representation of the search region by a set of tight local upper bounds (in the minimization case) that can be derived from the points of NN. Local upper bounds play an important role in methods for generating or approximating the nondominated set of an MOO problem, yet few works in the field of MOO address their efficient incremental determination. We relate this issue to the state of the art in computational geometry and provide several equivalent definitions of local upper bounds that are meaningful in MOO. We discuss the complexity of this representation in arbitrary dimension, which yields an improved upper bound on the number of solver calls in epsilon-constraint-like methods to generate the nondominated set of a discrete MOO problem. We analyze and enhance a first incremental approach which operates by eliminating redundancies among local upper bounds. We also study some properties of local upper bounds, especially concerning the issue of redundant local upper bounds, that give rise to a new incremental approach which avoids such redundancies. Finally, the complexities of the incremental approaches are compared from the theoretical and empirical points of view.Comment: 27 pages, to appear in European Journal of Operational Researc

    Optimizing over the Efficient Set of a Multi-Objective Discrete Optimization Problem

    Get PDF
    Optimizing over the efficient set of a discrete multi-objective problem is a challenging issue. The main reason is that, unlike when optimizing over the feasible set, the efficient set is implicitly characterized. Therefore, methods designed for this purpose iteratively generate efficient solutions by solving appropriate single-objective problems. However, the number of efficient solutions can be quite large and the problems to be solved can be difficult practically. Thus, the challenge is both to minimize the number of iterations and to reduce the difficulty of the problems to be solved at each iteration. In this paper, a new enumeration scheme is proposed. By introducing some constraints and optimizing over projections of the search region, potentially large parts of the search space can be discarded, drastically reducing the number of iterations. Moreover, the single-objective programs to be solved can be guaranteed to be feasible, and a starting solution can be provided allowing warm start resolutions. This results in a fast algorithm that is simple to implement. Experimental computations on two standard multi-objective instance families show that our approach seems to perform significantly faster than the state of the art algorithm

    Relaxations and Duality for Multiobjective Integer Programming

    Full text link
    Multiobjective integer programs (MOIPs) simultaneously optimize multiple objective functions over a set of linear constraints and integer variables. In this paper, we present continuous, convex hull and Lagrangian relaxations for MOIPs and examine the relationship among them. The convex hull relaxation is tight at supported solutions, i.e., those that can be derived via a weighted-sum scalarization of the MOIP. At unsupported solutions, the convex hull relaxation is not tight and a Lagrangian relaxation may provide a tighter bound. Using the Lagrangian relaxation, we define a Lagrangian dual of an MOIP that satisfies weak duality and is strong at supported solutions under certain conditions on the primal feasible region. We include a numerical experiment to illustrate that bound sets obtained via Lagrangian duality may yield tighter bounds than those from a convex hull relaxation. Subsequently, we generalize the integer programming value function to MOIPs and use its properties to motivate a set-valued superadditive dual that is strong at supported solutions. We also define a simpler vector-valued superadditive dual that exhibits weak duality but is strongly dual if and only if the primal has a unique nondominated point
    • …
    corecore