41 research outputs found

    Counting matrices over finite fields with support on skew Young diagrams and complements of Rothe diagrams

    Full text link
    We consider the problem of finding the number of matrices over a finite field with a certain rank and with support that avoids a subset of the entries. These matrices are a q-analogue of permutations with restricted positions (i.e., rook placements). For general sets of entries these numbers of matrices are not polynomials in q (Stembridge 98); however, when the set of entries is a Young diagram, the numbers, up to a power of q-1, are polynomials with nonnegative coefficients (Haglund 98). In this paper, we give a number of conditions under which these numbers are polynomials in q, or even polynomials with nonnegative integer coefficients. We extend Haglund's result to complements of skew Young diagrams, and we apply this result to the case when the set of entries is the Rothe diagram of a permutation. In particular, we give a necessary and sufficient condition on the permutation for its Rothe diagram to be the complement of a skew Young diagram up to rearrangement of rows and columns. We end by giving conjectures connecting invertible matrices whose support avoids a Rothe diagram and Poincar\'e polynomials of the strong Bruhat order.Comment: 24 pages, 9 figures, 1 tabl

    Computation and Physics in Algebraic Geometry

    Get PDF
    Physics provides new, tantalizing problems that we solve by developing and implementing innovative and effective geometric tools in nonlinear algebra. The techniques we employ also rely on numerical and symbolic computations performed with computer algebra. First, we study solutions to the Kadomtsev-Petviashvili equation that arise from singular curves. The Kadomtsev-Petviashvili equation is a partial differential equation describing nonlinear wave motion whose solutions can be built from an algebraic curve. Such a surprising connection established by Krichever and Shiota also led to an entirely new point of view on a classical problem in algebraic geometry known as the Schottky problem. To explore the connection with curves with at worst nodal singularities, we define the Hirota variety, which parameterizes KP solutions arising from such curves. Studying the geometry of the Hirota variety provides a new approach to the Schottky problem. We investigate it for irreducible rational nodal curves, giving a partial solution to the weak Schottky problem in this case. Second, we formulate questions from scattering amplitudes in a broader context using very affine varieties and D-module theory. The interplay between geometry and combinatorics in particle physics indeed suggests an underlying, coherent mathematical structure behind the study of particle interactions. In this thesis, we gain a better understanding of mathematical objects, such as moduli spaces of point configurations and generalized Euler integrals, for which particle physics provides concrete, non-trivial examples, and we prove some conjectures stated in the physics literature. Finally, we study linear spaces of symmetric matrices, addressing questions motivated by algebraic statistics, optimization, and enumerative geometry. This includes giving explicit formulas for the maximum likelihood degree and studying tangency problems for quadric surfaces in projective space from the point of view of real algebraic geometry

    Permutation classes

    Full text link
    This is a survey on permutation classes for the upcoming book Handbook of Enumerative Combinatorics
    corecore