84 research outputs found

    Counting Triangulations and other Crossing-Free Structures Approximately

    Full text link
    We consider the problem of counting straight-edge triangulations of a given set PP of nn points in the plane. Until very recently it was not known whether the exact number of triangulations of PP can be computed asymptotically faster than by enumerating all triangulations. We now know that the number of triangulations of PP can be computed in O∗(2n)O^{*}(2^{n}) time, which is less than the lower bound of Ω(2.43n)\Omega(2.43^{n}) on the number of triangulations of any point set. In this paper we address the question of whether one can approximately count triangulations in sub-exponential time. We present an algorithm with sub-exponential running time and sub-exponential approximation ratio, that is, denoting by Λ\Lambda the output of our algorithm, and by cnc^{n} the exact number of triangulations of PP, for some positive constant cc, we prove that cn≤Λ≤cn⋅2o(n)c^{n}\leq\Lambda\leq c^{n}\cdot 2^{o(n)}. This is the first algorithm that in sub-exponential time computes a (1+o(1))(1+o(1))-approximation of the base of the number of triangulations, more precisely, c≤Λ1n≤(1+o(1))cc\leq\Lambda^{\frac{1}{n}}\leq(1 + o(1))c. Our algorithm can be adapted to approximately count other crossing-free structures on PP, keeping the quality of approximation and running time intact. In this paper we show how to do this for matchings and spanning trees.Comment: 19 pages, 2 figures. A preliminary version appeared at CCCG 201

    Enumerating Constrained Non-Crossing Minimally Rigid Frameworks

    Get PDF
    In this paper we present an algorithm for enumerating without repetitions all the non-crossing generically minimally rigid bar-and-joint frameworks under edge constraints, which we call constrained non-crossing Laman frameworks, on a given set of n points in the plane. Our algorithm is based on the reverse search paradigm of Avis and Fukuda. It generates each output graph in O(n4) time and O(n) space, or, with a slightly different implementation, in O(n3) time and O(n2) space. In particular, we obtain that the set of all the constrained non-crossing Laman frameworks on a given point set is connected by flips which preserve the Laman property

    Expansive Motions and the Polytope of Pointed Pseudo-Triangulations

    Full text link
    We introduce the polytope of pointed pseudo-triangulations of a point set in the plane, defined as the polytope of infinitesimal expansive motions of the points subject to certain constraints on the increase of their distances. Its 1-skeleton is the graph whose vertices are the pointed pseudo-triangulations of the point set and whose edges are flips of interior pseudo-triangulation edges. For points in convex position we obtain a new realization of the associahedron, i.e., a geometric representation of the set of triangulations of an n-gon, or of the set of binary trees on n vertices, or of many other combinatorial objects that are counted by the Catalan numbers. By considering the 1-dimensional version of the polytope of constrained expansive motions we obtain a second distinct realization of the associahedron as a perturbation of the positive cell in a Coxeter arrangement. Our methods produce as a by-product a new proof that every simple polygon or polygonal arc in the plane has expansive motions, a key step in the proofs of the Carpenter's Rule Theorem by Connelly, Demaine and Rote (2000) and by Streinu (2000).Comment: 40 pages, 7 figures. Changes from v1: added some comments (specially to the "Further remarks" in Section 5) + changed to final book format. This version is to appear in "Discrete and Computational Geometry -- The Goodman-Pollack Festschrift" (B. Aronov, S. Basu, J. Pach, M. Sharir, eds), series "Algorithms and Combinatorics", Springer Verlag, Berli

    IST Austria Thesis

    Get PDF
    This thesis considers two examples of reconfiguration problems: flipping edges in edge-labelled triangulations of planar point sets and swapping labelled tokens placed on vertices of a graph. In both cases the studied structures – all the triangulations of a given point set or all token placements on a given graph – can be thought of as vertices of the so-called reconfiguration graph, in which two vertices are adjacent if the corresponding structures differ by a single elementary operation – by a flip of a diagonal in a triangulation or by a swap of tokens on adjacent vertices, respectively. We study the reconfiguration of one instance of a structure into another via (shortest) paths in the reconfiguration graph. For triangulations of point sets in which each edge has a unique label and a flip transfers the label from the removed edge to the new edge, we prove a polynomial-time testable condition, called the Orbit Theorem, that characterizes when two triangulations of the same point set lie in the same connected component of the reconfiguration graph. The condition was first conjectured by Bose, Lubiw, Pathak and Verdonschot. We additionally provide a polynomial time algorithm that computes a reconfiguring flip sequence, if it exists. Our proof of the Orbit Theorem uses topological properties of a certain high-dimensional cell complex that has the usual reconfiguration graph as its 1-skeleton. In the context of token swapping on a tree graph, we make partial progress on the problem of finding shortest reconfiguration sequences. We disprove the so-called Happy Leaf Conjecture and demonstrate the importance of swapping tokens that are already placed at the correct vertices. We also prove that a generalization of the problem to weighted coloured token swapping is NP-hard on trees but solvable in polynomial time on paths and stars

    Peeling and Nibbling the Cactus: Subexponential-Time Algorithms for Counting Triangulations and Related Problems

    Get PDF
    Given a set of n points S in the plane, a triangulation T of S is a maximal set of non-crossing segments with endpoints in S. We present an algorithm that computes the number of triangulations on a given set of n points in time n^{ (11+ o(1)) sqrt{n} }, significantly improving the previous best running time of O(2^n n^2) by Alvarez and Seidel [SoCG 2013]. Our main tool is identifying separators of size O(sqrt{n}) of a triangulation in a canonical way. The definition of the separators are based on the decomposition of the triangulation into nested layers ("cactus graphs"). Based on the above algorithm, we develop a simple and formal framework to count other non-crossing straight-line graphs in n^{O(sqrt{n})} time. We demonstrate the usefulness of the framework by applying it to counting non-crossing Hamilton cycles, spanning trees, perfect matchings, 3-colorable triangulations, connected graphs, cycle decompositions, quadrangulations, 3-regular graphs, and more

    Peeling and nibbling the cactus: Subexponential-time algorithms for counting triangulations and related problems

    Get PDF
    Given a set of nn points SS in the plane, a triangulation TT of SS is a maximal set of non-crossing segments with endpoints in SS. We present an algorithm that computes the number of triangulations on a given set of nn points in time n(11+o(1))nn^{(11+ o(1))\sqrt{n} }, significantly improving the previous best running time of O(2nn2)O(2^n n^2) by Alvarez and Seidel [SoCG 2013]. Our main tool is identifying separators of size O(n)O(\sqrt{n}) of a triangulation in a canonical way. The definition of the separators are based on the decomposition of the triangulation into nested layers ("cactus graphs"). Based on the above algorithm, we develop a simple and formal framework to count other non-crossing straight-line graphs in nO(n)n^{O(\sqrt{n})} time. We demonstrate the usefulness of the framework by applying it to counting non-crossing Hamilton cycles, spanning trees, perfect matchings, 33-colorable triangulations, connected graphs, cycle decompositions, quadrangulations, 33-regular graphs, and more.Comment: 47 pages, 23 Figures, to appear in SoCG 201

    Counting Polygon Triangulations is Hard

    Get PDF
    We prove that it is #P-complete to count the triangulations of a (non-simple) polygon
    • …
    corecore