238 research outputs found

    Asymptotic enumeration of correlation-immune boolean functions

    Get PDF
    A boolean function of nn boolean variables is {correlation-immune} of order kk if the function value is uncorrelated with the values of any kk of the arguments. Such functions are of considerable interest due to their cryptographic properties, and are also related to the orthogonal arrays of statistics and the balanced hypercube colourings of combinatorics. The {weight} of a boolean function is the number of argument values that produce a function value of 1. If this is exactly half the argument values, that is, 2n12^{n-1} values, a correlation-immune function is called {resilient}. An asymptotic estimate of the number N(n,k)N(n,k) of nn-variable correlation-immune boolean functions of order kk was obtained in 1992 by Denisov for constant kk. Denisov repudiated that estimate in 2000, but we will show that the repudiation was a mistake. The main contribution of this paper is an asymptotic estimate of N(n,k)N(n,k) which holds if kk increases with nn within generous limits and specialises to functions with a given weight, including the resilient functions. In the case of k=1k=1, our estimates are valid for all weights.Comment: 18 page

    Balanced Symmetric Functions over GF(p)GF(p)

    Get PDF
    Under mild conditions on n,pn,p, we give a lower bound on the number of nn-variable balanced symmetric polynomials over finite fields GF(p)GF(p), where pp is a prime number. The existence of nonlinear balanced symmetric polynomials is an immediate corollary of this bound. Furthermore, we conjecture that X(2t,2t+1l1)X(2^t,2^{t+1}l-1) are the only nonlinear balanced elementary symmetric polynomials over GF(2), where X(d,n)=i1<i2<...<idxi1xi2...xidX(d,n)=\sum_{i_1<i_2<...<i_d}x_{i_1} x_{i_2}... x_{i_d}, and we prove various results in support of this conjecture.Comment: 21 page

    A variation on bisecting the binomial coefficients

    Full text link
    In this paper, we present an algorithm which allows us to search for all the bisections for the binomial coefficients {(nk)}k=0,...,n\{\binom{n}{k} \}_{k=0,...,n} and include a table with the results for all n154n\le 154. Connections with previous work on this topic is included. We conjecture that the probability of having only trivial solutions is 5/65/6. \end{abstract}Comment: 14 pages, four tables, two figure

    A Secure Random Number Generator with Immunity and Propagation Characteristics for Cryptography Functions

    Get PDF
    Cryptographic algorithms and functions should possess some of the important functional requirements such as: non-linearity, resiliency, propagation and immunity. Several previous studies were executed to analyze these characteristics of the cryptographic functions specifically for Boolean and symmetric functions. Randomness is a requirement in present cryptographic algorithms and therefore, Symmetric Random Function Generator (SRFG) has been developed. In this paper, we have analysed SRFG based on propagation feature and immunity. Moreover, NIST recommended statistical suite has been tested on SRFG outputs. The test values show that SRFG possess some of the useful randomness properties for cryptographic applications such as individual frequency in a sequence and block-based frequency, long run of sequences, oscillations from 0 to 1 or vice-versa, patterns of bits, gap bits between two patterns, and overlapping block bits. We also analyze the comparison of SRFG and some existing random number generators. We observe that SRFG is efficient for cryptographic operations in terms of propagation and immunity features

    Counting and characterising functions with “fast points” for differential attacks

    Get PDF
    Higher order derivatives have been introduced by Lai in a cryptographic context. A number of attacks such as differential cryptanalysis, the cube and the AIDA attack have been reformulated using higher order derivatives. Duan and Lai have introduced the notion of “fast points” of a polynomial function f as being vectors a so that computing the derivative with respect to a decreases the total degree of f by more than one. This notion is motivated by the fact that most of the attacks become more efficient if they use fast points. Duan and Lai gave a characterisation of fast points and Duan et al. gave some results regarding the number of functions with fast points in some particular cases. We firstly give an alternative characterisation of fast points and secondly give an explicit formula for the number of functions with fast points for any given degree and number of variables, thus covering all the cases left open in Duan et al. Our main tool is an invertible linear change of coordinates which transforms the higher order derivative with respect to an arbitrary set of linearly independent vectors into the higher order derivative with respect to a set of vectors in the canonical basis. Finally we discuss the cryptographic significance of our results

    Matriochka symmetric Boolean functions

    Get PDF
    International audienceWe present the properties of a new class of Boolean functions defined as the sum of m symmetric functions with decreasing number of variables and degrees. The choice of this construction is justified by the possibility to study these functions by using tools existing for symmetric functions. On the one hand we show that the synthesis is well understood and give an upper bound on the gate complexity. On the other hand, we investigate the Walsh spectrum of the sum of two functions and get explicit formulae for the case of degree at most three

    A Hybrid Approach to Formal Verification of Higher-Order Masked Arithmetic Programs

    Get PDF
    Side-channel attacks, which are capable of breaking secrecy via side-channel information, pose a growing threat to the implementation of cryptographic algorithms. Masking is an effective countermeasure against side-channel attacks by removing the statistical dependence between secrecy and power consumption via randomization. However, designing efficient and effective masked implementations turns out to be an error-prone task. Current techniques for verifying whether masked programs are secure are limited in their applicability and accuracy, especially when they are applied. To bridge this gap, in this article, we first propose a sound type system, equipped with an efficient type inference algorithm, for verifying masked arithmetic programs against higher-order attacks. We then give novel model-counting based and pattern-matching based methods which are able to precisely determine whether the potential leaky observable sets detected by the type system are genuine or simply spurious. We evaluate our approach on various implementations of arithmetic cryptographicprograms.The experiments confirm that our approach out performs the state-of-the-art base lines in terms of applicability, accuracy and efficiency
    corecore