24,687 research outputs found

    Multidisciplinary design of a micro-USV for re-entry operations

    Get PDF
    Unmanned Space Vehicles (USV) are seen as a test-bed for enabling technologies and as a carrier to deliver and return experiments to and from low-Earth orbit. USV's are a potentially interesting solution also for the exploration of other planets or as long-range recognisance vehicles. As test bed, USV's are seen as a stepping stone for the development of future generation re-usable launchers but also as way to test key technologies for re-entry operations. Examples of recent developments are the PRORA-USV, designed by the Italian Aerospace Research Center (CIRA) in collaboration with Gavazzi Space, or the Boeing X-37B Orbital Test Vehicle (OTV), that is foreseen as an alternative to the space shuttle to deliver experiments into Earth orbit. Among the technologies to be demonstrated with the X-37 are improved thermal protection systems, avionics, the autonomous guidance system, and an advanced airfram

    Robust multi-fidelity design of a micro re-entry unmanned space vehicle

    Get PDF
    This article addresses the preliminary robust design of a small-scale re-entry unmanned space vehicle by means of a hybrid optimization technique. The approach, developed in this article, closely couples an evolutionary multi-objective algorithm with a direct transcription method for optimal control problems. The evolutionary part handles the shape parameters of the vehicle and the uncertain objective functions, while the direct transcription method generates an optimal control profile for the re-entry trajectory. Uncertainties on the aerodynamic forces and characteristics of the thermal protection material are incorporated into the vehicle model, and a Monte-Carlo sampling procedure is used to compute relevant statistical characteristics of the maximum heat flux and internal temperature. Then, the hybrid algorithm searches for geometries that minimize the mean value of the maximum heat flux, the mean value of the maximum internal temperature, and the weighted sum of their variance: the evolutionary part handles the shape parameters of the vehicle and the uncertain functions, while the direct transcription method generates the optimal control profile for the re-entry trajectory of each individual of the population. During the optimization process, artificial neural networks are utilized to approximate the aerodynamic forces required by the optimal control solver. The artificial neural networks are trained and updated by means of a multi-fidelity approach: initially a low-fidelity analytical model, fitted on a waverider type of vehicle, is used to train the neural networks, and through the evolution a mix of analytical and computational fluid dynamic, high-fidelity computations are used to update it. The data obtained by the high-fidelity model progressively become the main source of updates for the neural networks till, near the end of the optimization process, the influence of the data obtained by the analytical model is practically nullified. On the basis of preliminary results, the adopted technique is able to predict achievable performance of the small spacecraft and the requirements in terms of thermal protection materials

    Beauty and the Beast: Optimal Methods Meet Learning for Drone Racing

    Full text link
    Autonomous micro aerial vehicles still struggle with fast and agile maneuvers, dynamic environments, imperfect sensing, and state estimation drift. Autonomous drone racing brings these challenges to the fore. Human pilots can fly a previously unseen track after a handful of practice runs. In contrast, state-of-the-art autonomous navigation algorithms require either a precise metric map of the environment or a large amount of training data collected in the track of interest. To bridge this gap, we propose an approach that can fly a new track in a previously unseen environment without a precise map or expensive data collection. Our approach represents the global track layout with coarse gate locations, which can be easily estimated from a single demonstration flight. At test time, a convolutional network predicts the poses of the closest gates along with their uncertainty. These predictions are incorporated by an extended Kalman filter to maintain optimal maximum-a-posteriori estimates of gate locations. This allows the framework to cope with misleading high-variance estimates that could stem from poor observability or lack of visible gates. Given the estimated gate poses, we use model predictive control to quickly and accurately navigate through the track. We conduct extensive experiments in the physical world, demonstrating agile and robust flight through complex and diverse previously-unseen race tracks. The presented approach was used to win the IROS 2018 Autonomous Drone Race Competition, outracing the second-placing team by a factor of two.Comment: 6 pages (+1 references

    Multi-disciplinary shape optimization of an entry capsule integrated with custom neural network approximation and multi-delity approach

    Get PDF
    This paper describes a new integrated approach for the multi-disciplinary optimization of a entry capsule’s shape. Aerothermodynamics, Flight Mechanics and Thermal Protection System behaviour of a reference spaceship when crossing Martian atmosphere are considered, and several analytical, semi-empirical and numerical models are used. The multi-objective and multi-disciplinary optimization process implemented in Isight software environment allows finding a Pareto front of best shapes. The optimization process is integrated with a set of artificial neural networks, trained and updated by a multi-fidelity evolution control approach, to approximate the objective and constraint functions. Results obtained by means of the integrated approach with neural networks approximators are described and compared to the results obtained by a different optimization process, not using the approximators. The comparison highlights advantages and possible drawbacks of the proposed method, mainly in terms of calls to the true model and precision of the obtained Pareto front
    corecore