94 research outputs found

    Distributed spectrum leasing via cooperation

    Get PDF
    “Cognitive radio” networks enable the coexistence of primary (licensed) and secondary (unlicensed) terminals. Conventional frameworks, namely commons and property-rights models, while being promising in certain aspects, appear to have significant drawbacks for implementation of large-scale distributed cognitive radio networks, due to the technological and theoretical limits on the ability of secondary activity to perform effective spectrum sensing and on the stringent constraints on protocols and architectures. To address the problems highlighted above, the framework of distributed spectrum leasing via cross-layer cooperation (DiSC) has been recently proposed as a basic mechanism to guide the design of decentralized cognitive radio networks. According to this framework, each primary terminal can ”lease” a transmission opportunity to a local secondary terminal in exchange for cooperation (relaying) as long as secondary quality-of-service (QoS) requirements are satisfied. The dissertation starts by investigating the performance bounds from an information-theoretical standpoint by focusing on the scenario of a single primary user and multiple secondary users with private messages. Achievable rate regions are derived for discrete memoryless and Gaussian models by considering Decode-and-Forward (DF), with both standard and parity-forwarding techniques, and Compress-and-Forward (CF), along with superposition coding at the secondary nodes. Then a framework is proposed that extends the analysis to multiple primary users and multiple secondary users by leveraging the concept of Generalized Nash Equilibrium. Accordingly, multiple primary users, each owning its own spectral resource, compete for the cooperation of the available secondary users under a shared constraint on all spectrum leasing decisions set by the secondary QoS requirements. A general formulation of the problem is given and solutions are proposed with different signaling requirements among the primary users. The novel idea of interference forwarding as a mechanism to enable DiSC is proposed, whereby primary users lease part of their spectrum to the secondary users if the latter assist by forwarding information about the interference to enable interference mitigation at the primary receivers. Finally, an application of DiSC in multi-tier wireless networks such as femtocells overlaid by macrocells whereby the femtocell base station acts as a relay for the macrocell users is presented. The performance advantages of the proposed application are evaluated by studying the transmission reliability of macro and femto users for a quasi-static fading channel in terms of outage probability and diversity-multiplexing trade-off for uplink and, more briefly, for downlink

    Resource Allocation and Service Management in Next Generation 5G Wireless Networks

    Get PDF
    The accelerated evolution towards next generation networks is expected to dramatically increase mobile data traffic, posing challenging requirements for future radio cellular communications. User connections are multiplying, whilst data hungry content is dominating wireless services putting significant pressure on network's available spectrum. Ensuring energy-efficient and low latency transmissions, while maintaining advanced Quality of Service (QoS) and high standards of user experience are of profound importance in order to address diversifying user prerequisites and ensure superior and sustainable network performance. At the same time, the rise of 5G networks and the Internet of Things (IoT) evolution is transforming wireless infrastructure towards enhanced heterogeneity, multi-tier architectures and standards, as well as new disruptive telecommunication technologies. The above developments require a rethinking of how wireless networks are designed and operate, in conjunction with the need to understand more holistically how users interact with the network and with each other. In this dissertation, we tackle the problem of efficient resource allocation and service management in various network topologies under a user-centric approach. In the direction of ad-hoc and self-organizing networks where the decision making process lies at the user level, we develop a novel and generic enough framework capable of solving a wide array of problems with regards to resource distribution in an adaptable and multi-disciplinary manner. Aiming at maximizing user satisfaction and also achieve high performance - low power resource utilization, the theory of network utility maximization is adopted, with the examined problems being formulated as non-cooperative games. The considered games are solved via the principles of Game Theory and Optimization, while iterative and low complexity algorithms establish their convergence to steady operational outcomes, i.e., Nash Equilibrium points. This thesis consists a meaningful contribution to the current state of the art research in the field of wireless network optimization, by allowing users to control multiple degrees of freedom with regards to their transmission, considering mobile customers and their strategies as the key elements for the amelioration of network's performance, while also adopting novel technologies in the resource management problems. First, multi-variable resource allocation problems are studied for multi-tier architectures with the use of femtocells, addressing the topic of efficient power and/or rate control, while also the topic is examined in Visible Light Communication (VLC) networks under various access technologies. Next, the problem of customized resource pricing is considered as a separate and bounded resource to be optimized under distinct scenarios, which expresses users' willingness to pay instead of being commonly implemented by a central administrator in the form of penalties. The investigation is further expanded by examining the case of service provider selection in competitive telecommunication markets which aim to increase their market share by applying different pricing policies, while the users model the selection process by behaving as learning automata under a Machine Learning framework. Additionally, the problem of resource allocation is examined for heterogeneous services where users are enabled to dynamically pick the modules needed for their transmission based on their preferences, via the concept of Service Bundling. Moreover, in this thesis we examine the correlation of users' energy requirements with their transmission needs, by allowing the adaptive energy harvesting to reflect the consumed power in the subsequent information transmission in Wireless Powered Communication Networks (WPCNs). Furthermore, in this thesis a fresh perspective with respect to resource allocation is provided assuming real life conditions, by modeling user behavior under Prospect Theory. Subjectivity in decisions of users is introduced in situations of high uncertainty in a more pragmatic manner compared to the literature, where they behave as blind utility maximizers. In addition, network spectrum is considered as a fragile resource which might collapse if over-exploited under the principles of the Tragedy of the Commons, allowing hence users to sense risk and redefine their strategies accordingly. The above framework is applied in different cases where users have to select between a safe and a common pool of resources (CPR) i.e., licensed and unlicensed bands, different access technologies, etc., while also the impact of pricing in protecting resource fragility is studied. Additionally, the above resource allocation problems are expanded in Public Safety Networks (PSNs) assisted by Unmanned Aerial Vehicles (UAVs), while also aspects related to network security against malign user behaviors are examined. Finally, all the above problems are thoroughly evaluated and tested via a series of arithmetic simulations with regards to the main characteristics of their operation, as well as against other approaches from the literature. In each case, important performance gains are identified with respect to the overall energy savings and increased spectrum utilization, while also the advantages of the proposed framework are mirrored in the improvement of the satisfaction and the superior Quality of Service of each user within the network. Lastly, the flexibility and scalability of this work allow for interesting applications in other domains related to resource allocation in wireless networks and beyond

    Many-to-Many Matching Games for Proactive Social-Caching in Wireless Small Cell Networks

    Full text link
    In this paper, we address the caching problem in small cell networks from a game theoretic point of view. In particular, we formulate the caching problem as a many-to-many matching game between small base stations and service providers' servers. The servers store a set of videos and aim to cache these videos at the small base stations in order to reduce the experienced delay by the end-users. On the other hand, small base stations cache the videos according to their local popularity, so as to reduce the load on the backhaul links. We propose a new matching algorithm for the many-to-many problem and prove that it reaches a pairwise stable outcome. Simulation results show that the number of satisfied requests by the small base stations in the proposed caching algorithm can reach up to three times the satisfaction of a random caching policy. Moreover, the expected download time of all the videos can be reduced significantly

    Software-defined Networking enabled Resource Management and Security Provisioning in 5G Heterogeneous Networks

    Get PDF
    Due to the explosive growth of mobile data traffic and the shortage of spectral resources, 5G networks are envisioned to have a densified heterogeneous network (HetNet) architecture, combining multiple radio access technologies (multi-RATs) into a single holistic network. The co-existing of multi-tier architectures bring new challenges, especially on resource management and security provisioning, due to the lack of common interface and consistent policy across HetNets. In this thesis, we aim to address the technical challenges of data traffic management, coordinated spectrum sharing and security provisioning in 5G HetNets through the introduction of a programmable management platform based on Software-defined networking (SDN). To address the spectrum shortage problem in cellular networks, cellular data traffic is efficiently offloaded to the Wi-Fi network, and the quality of service of user applications is guaranteed with the proposed delay tolerance based partial data offloading algorithm. A two-layered information collection is also applied to best load balancing decision-making. Numerical results show that the proposed schemes exploit an SDN controller\u27s global view of the HetNets and take optimized resource allocation decisions. To support growing vehicle-generated data traffic in 5G-vehicle ad hoc networks (VANET), SDN-enabled adaptive vehicle clustering algorithm is proposed based on the real-time road traffic condition collected from HetNet infrastructure. Traffic offloading is achieved within each cluster and dynamic beamformed transmission is also applied to improve trunk link communication quality. To further achieve a coordinated spectrum sharing across HetNets, an SDN enabled orchestrated spectrum sharing scheme that integrates participating HetNets into an amalgamated network through a common configuration interface and real-time information exchange is proposed. In order to effectively protect incumbent users, a real-time 3D interference map is developed to guide the spectrum access based on the SDN global view. MATLAB simulations confirm that average interference at incumbents is reduced as well as the average number of denied access. Moreover, to tackle the contradiction between more stringent latency requirement of 5G and the potential delay induced by frequent authentications in 5G small cells and HetNets, an SDN-enabled fast authentication scheme is proposed in this thesis to simplify authentication handover, through sharing of user-dependent secure context information (SCI) among related access points. The proposed SCI is a weighted combination of user-specific attributes, which provides unique fingerprint of the specific device without additional hardware and computation cost. Numerical results show that the proposed non-cryptographic authentication scheme achieves comparable security with traditional cryptographic algorithms, while reduces authentication complexity and latency especially when network load is high
    corecore