347 research outputs found

    Health monitoring of Gas turbine engines: Framework design and strategies

    Get PDF

    Prognostics and health management for maintenance practitioners - Review, implementation and tools evaluation.

    Get PDF
    In literature, prognostics and health management (PHM) systems have been studied by many researchers from many different engineering fields to increase system reliability, availability, safety and to reduce the maintenance cost of engineering assets. Many works conducted in PHM research concentrate on designing robust and accurate models to assess the health state of components for particular applications to support decision making. Models which involve mathematical interpretations, assumptions and approximations make PHM hard to understand and implement in real world applications, especially by maintenance practitioners in industry. Prior knowledge to implement PHM in complex systems is crucial to building highly reliable systems. To fill this gap and motivate industry practitioners, this paper attempts to provide a comprehensive review on PHM domain and discusses important issues on uncertainty quantification, implementation aspects next to prognostics feature and tool evaluation. In this paper, PHM implementation steps consists of; (1) critical component analysis, (2) appropriate sensor selection for condition monitoring (CM), (3) prognostics feature evaluation under data analysis and (4) prognostics methodology and tool evaluation matrices derived from PHM literature. Besides PHM implementation aspects, this paper also reviews previous and on-going research in high-speed train bogies to highlight problems faced in train industry and emphasize the significance of PHM for further investigations

    Nonparametric time series modelling for industrial prognostics and health management.

    No full text
    International audiencePrognostics and health management (PHM) methods aim at detecting the degradation, diagnosing the faults and predicting the time at which a system or a component will no longer perform its desired function. PHM is based on access to a model of a system or a component using one or combination of physical or data driven models. In physical based models one has to gather a lot of knowledge about the desired system, and then build analytical model of the system function of the degradation mechanism that is used as a reference during system operation. On the other hand data-driven models are based on the exploitation of symptoms or indicators of degradations using statistical or Artifcial Intelligence (AI) methods on the monitored system once it is operational and learn the normal behaviour. Trend extraction is one of the methods used to extract important information contained in the sensory signals, which can be used for data driven models. However, extraction of such information from collected data in a practical working environment is always a great challenge as sensory signals are usually multidimensional and obscured by noise. Also, the extracted trends should represent the nominal behaviour of the system as well as should represent the health status evolution. This paper presents a method for nonparametric trend modelling from multidimensional sensory data so as to use such trends in machinery health prognostics. The goal of this work is to develop a method that can extract features representing the nominal behaviour of the monitored component and from these features extract smooth trends to represent the critical component's health evolution over the time. The proposed method starts by multidimensional feature extraction from machinery sensory signals. Then, unsupervised feature selection on the features domain is applied without making any assumptions concerning the number of the extracted features. The selected features can be used to represent the nominal behaviour of the system and hence detect any deviation. Then, empirical mode decomposition algorithm (EMD) is applied on the projected features with the purpose of following the evolution of data in a compact representation over time. Finally, ridge regression is applied to the extracted trend for modelling and can be used later for remaining useful life prediction. The method is demonstrated on accelerated degradation dataset of bearings acquired from PRONOSTIA experimental platform and another dataset downloaded form NASA repository where it is shown to be able to extract signal trends

    Vehicle level health assessment through integrated operational scalable prognostic reasoners

    Get PDF
    Today’s aircraft are very complex in design and need constant monitoring of the systems to establish the overall health status. Integrated Vehicle Health Management (IVHM) is a major component in a new future asset management paradigm where a conscious effort is made to shift asset maintenance from a scheduled based approach to a more proactive and predictive approach. Its goal is to maximize asset operational availability while minimising downtime and the logistics footprint through monitoring deterioration of component conditions. IVHM involves data processing which comprehensively consists of capturing data related to assets, monitoring parameters, assessing current or future health conditions through prognostics and diagnostics engine and providing recommended maintenance actions. The data driven prognostics methods usually use a large amount of data to learn the degradation pattern (nominal model) and predict the future health. Usually the data which is run-to-failure used are accelerated data produced in lab environments, which is hardly the case in real life. Therefore, the nominal model is far from the present condition of the vehicle, hence the predictions will not be very accurate. The prediction model will try to follow the nominal models which mean more errors in the prediction, this is a major drawback of the data driven techniques. This research primarily presents the two novel techniques of adaptive data driven prognostics to capture the vehicle operational scalability degradation. Secondary the degradation information has been used as a Health index and in the Vehicle Level Reasoning System (VLRS). Novel VLRS are also presented in this research study. The research described here proposes a condition adaptive prognostics reasoning along with VLRS

    Novel failure prognostics approach with dynamic thresholds for machine degradation.

    No full text
    International audienceEstimating remaining useful life (RUL) of critical machinery is a challenging task. It is achieved through essential steps of data acquisition, data pre-processing and prognostics modeling. To estimate RUL of a degrading machinery, prognostics modeling phase requires precise knowledge about failure threshold (FT) (or failure definition). Practically, degrading machinery can have different levels (states) of degradation before failure, and prognostics can be quite complicated or even impossible when there is absence of prior knowledge about actual states of degrading machinery or FT. In this paper a novel approach is proposed to improve failure prognostics. In brief, the proposed prognostics model integrates two new algorithms, namely, a Summation Wavelet Extreme Learning Machine (SWELM) and Subtractive-Maximum Entropy Fuzzy Clustering (S-MEFC) to predict degrading behavior, automatically identify the states of degrading machinery, and to dynamically assign FT. Indeed, for practical reasons there is no interest in assuming FT for RUL estimation. The effectiveness of the approach is judged by applying it to real dataset in order to estimate future breakdown of a real machinery

    Advanced methodologies for reliability-based design optimization and structural health prognostics

    Get PDF
    Failures of engineered systems can lead to significant economic and societal losses. To minimize the losses, reliability must be ensured throughout the system's lifecycle in the presence of manufacturing variability and uncertain operational conditions. Many reliability-based design optimization (RBDO) techniques have been developed to ensure high reliability of engineered system design under manufacturing variability. Schedule-based maintenance, although expensive, has been a popular method to maintain highly reliable engineered systems under uncertain operational conditions. However, so far there is no cost-effective and systematic approach to ensure high reliability of engineered systems throughout their lifecycles while accounting for both the manufacturing variability and uncertain operational conditions. Inspired by an intrinsic ability of systems in ecology, economics, and other fields that is able to proactively adjust their functioning to avoid potential system failures, this dissertation attempts to adaptively manage engineered system reliability during its lifecycle by advancing two essential and co-related research areas: system RBDO and prognostics and health management (PHM). System RBDO ensures high reliability of an engineered system in the early design stage, whereas capitalizing on PHM technology enables the system to proactively avoid failures in its operation stage. Extensive literature reviews in these areas have identified four key research issues: (1) how system failure modes and their interactions can be analyzed in a statistical sense; (2) how limited data for input manufacturing variability can be used for RBDO; (3) how sensor networks can be designed to effectively monitor system health degradation under highly uncertain operational conditions; and (4) how accurate and timely remaining useful lives of systems can be predicted under highly uncertain operational conditions. To properly address these key research issues, this dissertation lays out four research thrusts in the following chapters: Chapter 3 - Complementary Intersection Method for System Reliability Analysis, Chapter 4 - Bayesian Approach to RBDO, Chapter 5 - Sensing Function Design for Structural Health Prognostics, and Chapter 6 - A Generic Framework for Structural Health Prognostics. Multiple engineering case studies are presented to demonstrate the feasibility and effectiveness of the proposed RBDO and PHM techniques for ensuring and improving the reliability of engineered systems within their lifecycles
    • …
    corecore