5,932 research outputs found

    Active vision for dexterous grasping of novel objects

    Get PDF
    How should a robot direct active vision so as to ensure reliable grasping? We answer this question for the case of dexterous grasping of unfamiliar objects. By dexterous grasping we simply mean grasping by any hand with more than two fingers, such that the robot has some choice about where to place each finger. Such grasps typically fail in one of two ways, either unmodeled objects in the scene cause collisions or object reconstruction is insufficient to ensure that the grasp points provide a stable force closure. These problems can be solved more easily if active sensing is guided by the anticipated actions. Our approach has three stages. First, we take a single view and generate candidate grasps from the resulting partial object reconstruction. Second, we drive the active vision approach to maximise surface reconstruction quality around the planned contact points. During this phase, the anticipated grasp is continually refined. Third, we direct gaze to improve the safety of the planned reach to grasp trajectory. We show, on a dexterous manipulator with a camera on the wrist, that our approach (80.4% success rate) outperforms a randomised algorithm (64.3% success rate).Comment: IROS 2016. Supplementary video: https://youtu.be/uBSOO6tMzw

    Towards Active Event Recognition

    No full text
    Directing robot attention to recognise activities and to anticipate events like goal-directed actions is a crucial skill for human-robot interaction. Unfortunately, issues like intrinsic time constraints, the spatially distributed nature of the entailed information sources, and the existence of a multitude of unobservable states affecting the system, like latent intentions, have long rendered achievement of such skills a rather elusive goal. The problem tests the limits of current attention control systems. It requires an integrated solution for tracking, exploration and recognition, which traditionally have been seen as separate problems in active vision.We propose a probabilistic generative framework based on a mixture of Kalman filters and information gain maximisation that uses predictions in both recognition and attention-control. This framework can efficiently use the observations of one element in a dynamic environment to provide information on other elements, and consequently enables guided exploration.Interestingly, the sensors-control policy, directly derived from first principles, represents the intuitive trade-off between finding the most discriminative clues and maintaining overall awareness.Experiments on a simulated humanoid robot observing a human executing goal-oriented actions demonstrated improvement on recognition time and precision over baseline systems

    Anticipation in Human-Robot Cooperation: A Recurrent Neural Network Approach for Multiple Action Sequences Prediction

    Full text link
    Close human-robot cooperation is a key enabler for new developments in advanced manufacturing and assistive applications. Close cooperation require robots that can predict human actions and intent, and understand human non-verbal cues. Recent approaches based on neural networks have led to encouraging results in the human action prediction problem both in continuous and discrete spaces. Our approach extends the research in this direction. Our contributions are three-fold. First, we validate the use of gaze and body pose cues as a means of predicting human action through a feature selection method. Next, we address two shortcomings of existing literature: predicting multiple and variable-length action sequences. This is achieved by introducing an encoder-decoder recurrent neural network topology in the discrete action prediction problem. In addition, we theoretically demonstrate the importance of predicting multiple action sequences as a means of estimating the stochastic reward in a human robot cooperation scenario. Finally, we show the ability to effectively train the prediction model on a action prediction dataset, involving human motion data, and explore the influence of the model's parameters on its performance. Source code repository: https://github.com/pschydlo/ActionAnticipationComment: IEEE International Conference on Robotics and Automation (ICRA) 2018, Accepte

    Eye movement planning on Single-Sensor-Single-Indicator displays is vulnerable to user anxiety and cognitive load

    Get PDF
    In this study, we demonstrate the effects of anxiety and cognitive load on eye movement planning in an instrument flight task adhering to a single-sensor-single-indicator data visualisation design philosophy. The task was performed in neutral and anxiety conditions, while a low or high cognitive load, auditory n-back task was also performed. Cognitive load led to a reduction in the number of transitions between instruments, and impaired task performance. Changes in self-reported anxiety between the neutral and anxiety conditions positively correlated with changes in the randomness of eye movements between instruments, but only when cognitive load was high. Taken together, the results suggest that both cognitive load and anxiety impact gaze behavior, and that these effects should be explored when designing data visualization displays

    On Foveated Gaze Control and Combined Gaze and Locomotion Planning

    Get PDF
    This chapter presents recent research results of our laboratory in the area of vision an
    • ā€¦
    corecore