1,051 research outputs found

    Target Tracking in Wireless Sensor Networks

    Get PDF

    High Accuracy Distributed Target Detection and Classification in Sensor Networks Based on Mobile Agent Framework

    Get PDF
    High-accuracy distributed information exploitation plays an important role in sensor networks. This dissertation describes a mobile-agent-based framework for target detection and classification in sensor networks. Specifically, we tackle the challenging problems of multiple- target detection, high-fidelity target classification, and unknown-target identification. In this dissertation, we present a progressive multiple-target detection approach to estimate the number of targets sequentially and implement it using a mobile-agent framework. To further improve the performance, we present a cluster-based distributed approach where the estimated results from different clusters are fused. Experimental results show that the distributed scheme with the Bayesian fusion method have better performance in the sense that they have the highest detection probability and the most stable performance. In addition, the progressive intra-cluster estimation can reduce data transmission by 83.22% and conserve energy by 81.64% compared to the centralized scheme. For collaborative target classification, we develop a general purpose multi-modality, multi-sensor fusion hierarchy for information integration in sensor networks. The hierarchy is com- posed of four levels of enabling algorithms: local signal processing, temporal fusion, multi-modality fusion, and multi-sensor fusion using a mobile-agent-based framework. The fusion hierarchy ensures fault tolerance and thus generates robust results. In the meanwhile, it also takes into account energy efficiency. Experimental results based on two field demos show constant improvement of classification accuracy over different levels of the hierarchy. Unknown target identification in sensor networks corresponds to the capability of detecting targets without any a priori information, and of modifying the knowledge base dynamically. In this dissertation, we present a collaborative method to solve this problem among multiple sensors. When applied to the military vehicles data set collected in a field demo, about 80% unknown target samples can be recognized correctly, while the known target classification ac- curacy stays above 95%

    Communication Security in Wireless Sensor Networks

    Get PDF
    A wireless sensor network (WSN) usually consists of a large number of small, low-cost devices that have limited energy supply, computation, memory, and communication capacities. Recently, WSNs have drawn a lot of attention due to their broad applications in both military and civilian domains. Communication security is essential to the success of WSN applications, especially for those mission-critical applications working in unattended and even hostile environments. However, providing satisfactory security protection in WSNs has ever been a challenging task due to various network & resource constraints and malicious attacks. This motivates the research on communication security for WSNs. This dissertation studies communication security in WSNs with respect to three important aspects. The first study addresses broadcast/multicast security in WSNs. We propose a multi-user broadcast authentication technique, which overcomes the security vulnerability of existing solutions. The proposed scheme guarantees immediate broadcast authentication by employing public key cryptography, and achieves the efficiency through integrating various techniques from different domains. We also address multicast encryption to solve data confidentiality concern for secure multicast. We propose an efficient multicast key management scheme supporting a wide range of multicast semantics, which utilizes the fact that sensors are both routers and end-receivers. The second study addresses data report security in WSNs. We propose a location-aware end-to-end security framework for WSNs, in which secret keys are bound to geographic locations so that the impact of sensor compromise are limited only to their vicinity. The proposed scheme effectively defeats not only bogus data injection attacks but also various DoS attacks. In this study, we also address event boundary detection as a specific case of secure data aggregation in WSNs. We propose a secure and fault-tolerant event boundary detection scheme, which securely detects the boundaries of large spatial events in a localized statistic manner. The third study addresses random key pre-distribution in WSNs. We propose a keyed-hash-chain-based key pool generation technique, which leads to a more efficient key pre-distribution scheme with better security resilience in the case of sensor compromise

    Advanced Fault Diagnosis and Health Monitoring Techniques for Complex Engineering Systems

    Get PDF
    Over the last few decades, the field of fault diagnostics and structural health management has been experiencing rapid developments. The reliability, availability, and safety of engineering systems can be significantly improved by implementing multifaceted strategies of in situ diagnostics and prognostics. With the development of intelligence algorithms, smart sensors, and advanced data collection and modeling techniques, this challenging research area has been receiving ever-increasing attention in both fundamental research and engineering applications. This has been strongly supported by the extensive applications ranging from aerospace, automotive, transport, manufacturing, and processing industries to defense and infrastructure industries

    Recent Developments in Smart Healthcare

    Get PDF
    Medicine is undergoing a sector-wide transformation thanks to the advances in computing and networking technologies. Healthcare is changing from reactive and hospital-centered to preventive and personalized, from disease focused to well-being centered. In essence, the healthcare systems, as well as fundamental medicine research, are becoming smarter. We anticipate significant improvements in areas ranging from molecular genomics and proteomics to decision support for healthcare professionals through big data analytics, to support behavior changes through technology-enabled self-management, and social and motivational support. Furthermore, with smart technologies, healthcare delivery could also be made more efficient, higher quality, and lower cost. In this special issue, we received a total 45 submissions and accepted 19 outstanding papers that roughly span across several interesting topics on smart healthcare, including public health, health information technology (Health IT), and smart medicine

    Sensors Fault Diagnosis Trends and Applications

    Get PDF
    Fault diagnosis has always been a concern for industry. In general, diagnosis in complex systems requires the acquisition of information from sensors and the processing and extracting of required features for the classification or identification of faults. Therefore, fault diagnosis of sensors is clearly important as faulty information from a sensor may lead to misleading conclusions about the whole system. As engineering systems grow in size and complexity, it becomes more and more important to diagnose faulty behavior before it can lead to total failure. In the light of above issues, this book is dedicated to trends and applications in modern-sensor fault diagnosis

    Mitigating Denial of Service Attacks in Fog-Based Wireless Sensor Networks Using Machine Learning Techniques

    Full text link
    Wireless sensor networks are considered to be among the most significant and innovative technologies in the 21st century due to their wide range of industrial applications. Sensor nodes in these networks are susceptible to a variety of assaults due to their special qualities and method of deployment. In WSNs, denial of service attacks are common attacks in sensor networks. It is difficult to design a detection and prevention system that would effectively reduce the impact of these attacks on WSNs. In order to identify assaults on WSNs, this study suggests using two machine learning models: decision trees and XGBoost. The WSNs dataset was the subject of extensive tests to identify denial of service attacks. The experimental findings demonstrate that the XGBoost model, when applied to the entire dataset, has a higher true positive rate (98.3%) than the Decision tree approach (97.3%) and a lower false positive rate (1.7%) than the Decision tree technique (2.7%). Like this, with selected dataset assaults, the XGBoost approach has a higher true positive rate (99.01%) than the Decision tree technique (97.50%) and a lower false positive rate (0.99%) than the Decision tree technique (2.50%)

    Unified Role Assignment Framework For Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are made possible by the continuing improvements in embedded sensor, VLSI, and wireless radio technologies. Currently, one of the important challenges in sensor networks is the design of a systematic network management framework that allows localized and collaborative resource control uniformly across all application services such as sensing, monitoring, tracking, data aggregation, and routing. The research in wireless sensor networks is currently oriented toward a cross-layer network abstraction that supports appropriate fine or course grained resource controls for energy efficiency. In that regard, we have designed a unified role-based service paradigm for wireless sensor networks. We pursue this by first developing a Role-based Hierarchical Self-Organization (RBSHO) protocol that organizes a connected dominating set (CDS) of nodes called dominators. This is done by hierarchically selecting nodes that possess cumulatively high energy, connectivity, and sensing capabilities in their local neighborhood. The RBHSO protocol then assigns specific tasks such as sensing, coordination, and routing to appropriate dominators that end up playing a certain role in the network. Roles, though abstract and implicit, expose role-specific resource controls by way of role assignment and scheduling. Based on this concept, we have designed a Unified Role-Assignment Framework (URAF) to model application services as roles played by local in-network sensor nodes with sensor capabilities used as rules for role identification. The URAF abstracts domain specific role attributes by three models: the role energy model, the role execution time model, and the role service utility model. The framework then generalizes resource management for services by providing abstractions for controlling the composition of a service in terms of roles, its assignment, reassignment, and scheduling. To the best of our knowledge, a generic role-based framework that provides a simple and unified network management solution for wireless sensor networks has not been proposed previously

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future
    • …
    corecore