5,555 research outputs found

    The increase of the functional entropy of the human brain with age

    Get PDF
    We use entropy to characterize intrinsic ageing properties of the human brain. Analysis of fMRI data from a large dataset of individuals, using resting state BOLD signals, demonstrated that a functional entropy associated with brain activity increases with age. During an average lifespan, the entropy, which was calculated from a population of individuals, increased by approximately 0.1 bits, due to correlations in BOLD activity becoming more widely distributed. We attribute this to the number of excitatory neurons and the excitatory conductance decreasing with age. Incorporating these properties into a computational model leads to quantitatively similar results to the fMRI data. Our dataset involved males and females and we found significant differences between them. The entropy of males at birth was lower than that of females. However, the entropies of the two sexes increase at different rates, and intersect at approximately 50 years; after this age, males have a larger entropy

    Turbulence accelerates the growth of drinking water biofilms

    Get PDF
    Biofilms are found at the inner surfaces of drinking water pipes and, therefore, it is essential to understand biofilm processes to control their formation. Hydrodynamics play a crucial role in shaping biofilms. Thus, knowing how biofilms form, develop and disperse under different flow conditions is critical in the successful management of these systems. Here, the development of biofilms after 4 weeks, the initial formation of biofilms within 10 h and finally, the response of already established biofilms within 24-h intervals in which the flow regime was changed, were studied using a rotating annular reactor under three different flow regimes: turbulent, transition and laminar. Using fluorescence microscopy, information about the number of microcolonies on the reactor slides, the surface area of biofilms and of extracellular polymeric substances and the biofilm structures was acquired. Gravimetric measurements were conducted to characterise the thickness and density of biofilms, and spatial statistics were used to characterise the heterogeneity and spatial correlation of biofilm structures. Contrary to the prevailing view, it was shown that turbulent flow did not correlate with a reduction in biofilms; turbulence was found to enhance both the initial formation and the development of biofilms on the accessible surfaces. Additionally, after 24-h changes of the flow regime it was indicated that biofilms responded to the quick changes of the flow regime. Overall, this work suggests that different flow conditions can cause substantial changes in biofilm morphology and growth and specifically that turbulent flow can accelerate biofilm growth in drinking water

    Caenorhabditis elegans as a model system for studying drug induced mitochondrial toxicity

    Get PDF
    Today HIV-1 infection is recognized as a chronic disease with obligatory lifelong treatment to keep viral titers below detectable levels. The continuous intake of antiretroviral drugs however, leads to severe and even life-threatening side effects, supposedly by the deleterious impact of nucleoside-analogue type compounds on the functioning of the mitochondrial DNA polymerase. For detailed investigation of the yet partially understood underlying mechanisms, the availability of a versatile model system is crucial. We therefore set out to develop the use of Caenorhabditis elegansto study drug induced mitochondrial toxicity. Using a combination of molecular-biological and functional assays, combined with a quantitative analysis of mitochondrial network morphology, we conclude that anti-retroviral drugs with similar working mechanisms can be classified into distinct groups based on their effects on mitochondrial morphology and biochemistry. Additionally we show that mitochondrial toxicity of antiretroviral drugs cannot be exclusively attributed to interference with the mitochondrial DNA polymerase

    Study on physio-chemical properties of plasma polymerization in C2H2/N2 plasma and their impact on COL X

    Get PDF
    Nitrogen-containing plasma polymerization is of considerable interest for tissue engineering due to their properties on cell adhesion and mesenchymal stem cells (MSCs) response. In this study, low-pressure RF plasma of acetylene and nitrogen was used to deposit nitrogen-containing plasma polymerized coatings on several substrates. Deposition kinetics and surface characteristics of coatings were investigated in terms of RF power and gas flow ratio. OES was used to monitor the plasma process and investigate the relation between the film structure and plasma species. Presence of several bonds and low concentration of amine functional groups were determined using FTIR and Colorimetric methods. Contact angle goniometry results indicated about 30% increase in surface hydrophilicity. Stability of coatings in air and two different liquid environments was examined by repeating surface free energy measurements. Deposited films exhibited acceptable stability during the storage duration. Surface roughness measured by AFM was found to decrease with growing concentration of nitrogen. The deposition rate increased with increasing RF power and decreased with growing concentration of nitrogen. Zeta potential measurements of coatings revealed the negative potential on the surface of the thin films. Temporary suppression of collagen X in the presence of plasma coatings was confirmed by RT-PCR results

    An invariant-based damage model for human and animal skins

    Get PDF
    Constitutive modelling of skins that account for damage effects is important to provide insight for various clinical applications, such as skin trauma and injury, artificial skin design, skin aging, disease diagnosis, surgery, as well as comparative studies of skin biomechanics between species. In this study, a new damage model for human and animal skins is proposed for the first time. The model is nonlinear, anisotropic, invariant-based, and is based on the Gasser–Ogden–Holzapfel constitutive law initially developed for arteries. Taking account of the mean collagen fibre orientation and its dispersion, the new model can describe a wide range of skins with damage. The model is first tested on the uniaxial test data of human skin and then applied to nine groups of uniaxial test data for the human, swine, rabbit, bovine and rhino skins. The material parameters can be inversely estimated based on uniaxial tests using the optimization method in MATLAB with a root mean square error ranged between 2.15% and 12.18%. A sensitivity study confirms that the fibre orientation dispersion and the mean fibre angle are among the most important factors that influence the behaviour of the damage model. In addition, these two parameters can only be reliably estimated if some histological information is provided. We also found that depending on the location of skins, the tissue damage may be brittle controlled by the fibre breaking limit (i.e., when the fibre stretch is greater than 1.13–1.32, depending on the species), or ductile (due to both the fibre and the matrix damages). The brittle damages seem to occur mostly in the back, and the ductile damages are seen from samples taken from the belly. The proposed constitutive model may be applied to various clinical applications that require knowledge of the mechanical response of human and animal skins

    Nanomechanics on FGF-2 and Heparin Reveal Slip Bond Characteristics with pH Dependency

    Get PDF
    Fibroblast growth factor 2 (FGF-2), an important paracrine growth factor, binds electrostatically with low micromolar affinity to heparan sulfates present on extracellular matrix proteins. A single molecular analysis served as a basis to decipher the nanomechanical mechanism of the interaction between FGF-2 and the heparan sulfate surrogate, heparin, with a modular atomic force microscope (AFM) design combining magnetic actuators with force measurements at the low force regime (1 × 101 to 1 × 104 pN/s). Unbinding events between FGF-2–heparin complexes were specific and short-lived. Binding between FGF-2 and heparin had strong slip bond characteristics as demonstrated by a decrease of lifetime with tensile force on the complex. Unbinding forces between FGF-2 and heparin were further detailed at different pH as relevant for (patho-) physiological conditions. An acidic pH environment (5.5) modulated FGF-2–heparin binding as demonstrated by enhanced rupture forces needed to release FGF-2 from the heparin-FGF-2 complex as compared to physiological conditions. This study provides a mechanistic and hypothesis driven model on how molecular forces may impact FGF-2 release and storage during tissue remodeling and repair

    Melting transitions in biomembranes

    Full text link
    We investigated melting transitions in biological membranes in their native state that include their membrane proteins. These membranes originated from \textit{E. coli}, \textit{B. subtilis}, lung surfactant and nerve tissue from the spinal cord of several mammals. For some preparations, we studied the pressure, pH and ionic strength dependence of the transition. For porcine spine, we compared the transition of the native membrane to that of the extracted lipids. All preparations displayed melting transitions of 10-20 degrees below physiological or growth temperature, independent of the organism of origin and the respective cell type. The position of transitions in \textit{E. coli} membranes depends on the growth temperature. We discuss these findings in the context of the thermodynamic theory of membrane fluctuations that leads to largely altered elastic constants, an increase in fluctuation lifetime and in membrane permeability associated with the transitions. We also discuss how to distinguish lipid transitions from protein unfolding transitions. Since the feature of a transition slightly below physiological temperature is conserved even when growth conditions change, we conclude that the transitions are likely to be of major biological importance for the survival and the function of the cell.Comment: 12 pages, 6 Figures, 1 supplement with 1 figur
    • …
    corecore