66 research outputs found

    Full Diversity Unitary Precoded Integer-Forcing

    Full text link
    We consider a point-to-point flat-fading MIMO channel with channel state information known both at transmitter and receiver. At the transmitter side, a lattice coding scheme is employed at each antenna to map information symbols to independent lattice codewords drawn from the same codebook. Each lattice codeword is then multiplied by a unitary precoding matrix P{\bf P} and sent through the channel. At the receiver side, an integer-forcing (IF) linear receiver is employed. We denote this scheme as unitary precoded integer-forcing (UPIF). We show that UPIF can achieve full-diversity under a constraint based on the shortest vector of a lattice generated by the precoding matrix P{\bf P}. This constraint and a simpler version of that provide design criteria for two types of full-diversity UPIF. Type I uses a unitary precoder that adapts at each channel realization. Type II uses a unitary precoder, which remains fixed for all channel realizations. We then verify our results by computer simulations in 2×22\times2, and 4×44\times 4 MIMO using different QAM constellations. We finally show that the proposed Type II UPIF outperform the MIMO precoding X-codes at high data rates.Comment: 12 pages, 8 figures, to appear in IEEE-TW

    Power allocation and linear precoding for wireless communications with finite-alphabet inputs

    Get PDF
    This dissertation proposes a new approach to maximizing data rate/throughput of practical communication system/networks through linear precoding and power allocation. First, the mutual information or capacity region is derived for finite-alphabet inputs such as phase-shift keying (PSK), pulse-amplitude modulation (PAM), and quadrature amplitude modulation (QAM) signals. This approach, without the commonly used Gaussian input assumptions, complicates the mutual information analysis and precoder design but improves performance when the designed precoders are applied to practical systems and networks. Second, several numerical optimization methods are developed for multiple-input multiple-output (MIMO) multiple access channels, dual-hop relay networks, and point-to-point MIMO systems. In MIMO multiple access channels, an iterative weighted sum rate maximization algorithm is proposed which utilizes an alternating optimization strategy and gradient descent update. In dual-hop relay networks, the structure of the optimal precoder is exploited to develop a two-step iterative algorithm based on convex optimization and optimization on the Stiefel manifold. The proposed algorithm is insensitive to initial point selection and able to achieve a near global optimal precoder solution. The gradient descent method is also used to obtain the optimal power allocation scheme which maximizes the mutual information between the source node and destination node in dual-hop relay networks. For point-to-point MIMO systems, a low complexity precoding design method is proposed, which maximizes the lower bound of the mutual information with discretized power allocation vector in a non-iterative fashion, thus reducing complexity. Finally, performances of the proposed power allocation and linear precoding schemes are evaluated in terms of both mutual information and bit error rate (BER). Numerical results show that at the same target mutual information or sum rate, the proposed approaches achieve 3-10dB gains compared to the existing methods in the medium signal-to-noise ratio region. Such significant gains are also indicated in the coded BER systems --Abstract, page iv-v

    Linear MIMO Precoding in Jointly-Correlated Fading Multiple Access Channels with Finite Alphabet Signaling

    Full text link
    In this paper, we investigate the design of linear precoders for multiple-input multiple-output (MIMO) multiple access channels (MAC). We assume that statistical channel state information (CSI) is available at the transmitters and consider the problem under the practical finite alphabet input assumption. First, we derive an asymptotic (in the large-system limit) weighted sum rate (WSR) expression for the MIMO MAC with finite alphabet inputs and general jointly-correlated fading. Subsequently, we obtain necessary conditions for linear precoders maximizing the asymptotic WSR and propose an iterative algorithm for determining the precoders of all users. In the proposed algorithm, the search space of each user for designing the precoding matrices is its own modulation set. This significantly reduces the dimension of the search space for finding the precoding matrices of all users compared to the conventional precoding design for the MIMO MAC with finite alphabet inputs, where the search space is the combination of the modulation sets of all users. As a result, the proposed algorithm decreases the computational complexity for MIMO MAC precoding design with finite alphabet inputs by several orders of magnitude. Simulation results for finite alphabet signalling indicate that the proposed iterative algorithm achieves significant performance gains over existing precoder designs, including the precoder design based on the Gaussian input assumption, in terms of both the sum rate and the coded bit error rate.Comment: 7 pages, 2 figures, accepted for ICC1

    A framework for joint design of pilot sequence and linear precoder

    Get PDF
    Most performance measures of pilot-assisted multiple-input multiple-output systems are functions of the linear precoder and the pilot sequence. A framework for the optimization of these two parameters is proposed, based on a matrix-valued generalization of the concept of effective signal-to-noise ratio (SNR) introduced in the famous work by Hassibi and Hochwald. Our framework aims to extend the work of Hassibi and Hochwald by allowing for transmit-side fading correlations, and by considering a class of utility functions of said effective SNR matrix, most notably including the well-known capacity lower bound used by Hassibi and Hochwald. We tackle the joint optimization problem by recasting the optimization of the precoder (resp. pilot sequence) subject to a fixed pilot sequence (resp. precoder) into a convex problem. Furthermore, we prove that joint optimality requires that the eigenbases of the precoder and pilot sequence be both aligned along the eigenbasis of the channel correlation matrix. We finally describe how to wrap all studied subproblems into an iteration that converges to a local optimum of the joint optimization.Peer ReviewedPostprint (author's final draft

    Robust MIMO Precoding for the Schatten Norm Based Channel Uncertainty Set

    Get PDF
    The full potential of multi-input multi-output (MIMO) communication systems relies on exploiting channel state information at the transmitter (CSIT), which is, however, often subject to some uncertainty. In this paper, following the worst-case robust philosophy, we consider a robust MIMO precoding design with deterministic imperfect CSIT, formulated as a maximin problem, to maximize the worst-case received signal-to-noise ratio or minimize the worst-case error probability. Given different types of imperfect CSIT in practice, a unified framework is lacking in the literature to tackle various channel uncertainty. In this paper, we address this open problem by considering several classes of uncertainty sets that include most deterministic imperfect CSIT as special cases. We show that, for general convex uncertainty sets, the robust precoder, as the solution to the maximin problem, can be efficiently computed by solving a single convex optimization problem. Furthermore, when it comes to unitarily-invariant convex uncertainty sets, we prove the optimality of a channel-diagonalizing structure and simplify the complex-matrix problem to a real-vector power allocation problem, which is then analytically solved in a waterfilling manner. Finally, for uncertainty sets defined by a generic matrix norm, called the Schatten norm, we provide a fully closed-form solution to the robust precoding design, based on which the robustness of beamforming and uniform-power transmission is investigated

    Transmission strategies for broadband wireless systems with MMSE turbo equalization

    Get PDF
    This monograph details efficient transmission strategies for single-carrier wireless broadband communication systems employing iterative (turbo) equalization. In particular, the first part focuses on the design and analysis of low complexity and robust MMSE-based turbo equalizers operating in the frequency domain. Accordingly, several novel receiver schemes are presented which improve the convergence properties and error performance over the existing turbo equalizers. The second part discusses concepts and algorithms that aim to increase the power and spectral efficiency of the communication system by efficiently exploiting the available resources at the transmitter side based upon the channel conditions. The challenging issue encountered in this context is how the transmission rate and power can be optimized, while a specific convergence constraint of the turbo equalizer is guaranteed.Die vorliegende Arbeit beschäftigt sich mit dem Entwurf und der Analyse von effizienten Übertragungs-konzepten für drahtlose, breitbandige Einträger-Kommunikationssysteme mit iterativer (Turbo-) Entzerrung und Kanaldekodierung. Dies beinhaltet einerseits die Entwicklung von empfängerseitigen Frequenzbereichs-entzerrern mit geringer Komplexität basierend auf dem Prinzip der Soft Interference Cancellation Minimum-Mean Squared-Error (SC-MMSE) Filterung und andererseits den Entwurf von senderseitigen Algorithmen, die durch Ausnutzung von Kanalzustandsinformationen die Bandbreiten- und Leistungseffizienz in Ein- und Mehrnutzersystemen mit Mehrfachantennen (sog. Multiple-Input Multiple-Output (MIMO)) verbessern. Im ersten Teil dieser Arbeit wird ein allgemeiner Ansatz für Verfahren zur Turbo-Entzerrung nach dem Prinzip der linearen MMSE-Schätzung, der nichtlinearen MMSE-Schätzung sowie der kombinierten MMSE- und Maximum-a-Posteriori (MAP)-Schätzung vorgestellt. In diesem Zusammenhang werden zwei neue Empfängerkonzepte, die eine Steigerung der Leistungsfähigkeit und Verbesserung der Konvergenz in Bezug auf existierende SC-MMSE Turbo-Entzerrer in verschiedenen Kanalumgebungen erzielen, eingeführt. Der erste Empfänger - PDA SC-MMSE - stellt eine Kombination aus dem Probabilistic-Data-Association (PDA) Ansatz und dem bekannten SC-MMSE Entzerrer dar. Im Gegensatz zum SC-MMSE nutzt der PDA SC-MMSE eine interne Entscheidungsrückführung, so dass zur Unterdrückung von Interferenzen neben den a priori Informationen der Kanaldekodierung auch weiche Entscheidungen der vorherigen Detektions-schritte berücksichtigt werden. Durch die zusätzlich interne Entscheidungsrückführung erzielt der PDA SC-MMSE einen wesentlichen Gewinn an Performance in räumlich unkorrelierten MIMO-Kanälen gegenüber dem SC-MMSE, ohne dabei die Komplexität des Entzerrers wesentlich zu erhöhen. Der zweite Empfänger - hybrid SC-MMSE - bildet eine Verknüpfung von gruppenbasierter SC-MMSE Frequenzbereichsfilterung und MAP-Detektion. Dieser Empfänger besitzt eine skalierbare Berechnungskomplexität und weist eine hohe Robustheit gegenüber räumlichen Korrelationen in MIMO-Kanälen auf. Die numerischen Ergebnisse von Simulationen basierend auf Messungen mit einem Channel-Sounder in Mehrnutzerkanälen mit starken räumlichen Korrelationen zeigen eindrucksvoll die Überlegenheit des hybriden SC-MMSE-Ansatzes gegenüber dem konventionellen SC-MMSE-basiertem Empfänger. Im zweiten Teil wird der Einfluss von System- und Kanalmodellparametern auf die Konvergenzeigenschaften der vorgestellten iterativen Empfänger mit Hilfe sogenannter Korrelationsdiagramme untersucht. Durch semi-analytische Berechnungen der Entzerrer- und Kanaldecoder-Korrelationsfunktionen wird eine einfache Berechnungsvorschrift zur Vorhersage der Bitfehlerwahrscheinlichkeit von SC-MMSE und PDA SC-MMSE Turbo Entzerrern für MIMO-Fadingkanäle entwickelt. Des Weiteren werden zwei Fehlerschranken für die Ausfallwahrscheinlichkeit der Empfänger vorgestellt. Die semi-analytische Methode und die abgeleiteten Fehlerschranken ermöglichen eine aufwandsgeringe Abschätzung sowie Optimierung der Leistungsfähigkeit des iterativen Systems. Im dritten und abschließenden Teil werden Strategien zur Raten- und Leistungszuweisung in Kommunikationssystemen mit konventionellen iterativen SC-MMSE Empfängern untersucht. Zunächst wird das Problem der Maximierung der instantanen Summendatenrate unter der Berücksichtigung der Konvergenz des iterativen Empfängers für einen Zweinutzerkanal mit fester Leistungsallokation betrachtet. Mit Hilfe des Flächentheorems von Extrinsic-Information-Transfer (EXIT)-Funktionen wird eine obere Schranke für die erreichbare Ratenregion hergeleitet. Auf Grundlage dieser Schranke wird ein einfacher Algorithmus entwickelt, der für jeden Nutzer aus einer Menge von vorgegebenen Kanalcodes mit verschiedenen Codierraten denjenigen auswählt, der den instantanen Datendurchsatz des Mehrnutzersystems verbessert. Neben der instantanen Ratenzuweisung wird auch ein ausfallbasierter Ansatz zur Ratenzuweisung entwickelt. Hierbei erfolgt die Auswahl der Kanalcodes für die Nutzer unter Berücksichtigung der Einhaltung einer bestimmten Ausfallwahrscheinlichkeit (outage probability) des iterativen Empfängers. Des Weiteren wird ein neues Entwurfskriterium für irreguläre Faltungscodes hergeleitet, das die Ausfallwahrscheinlichkeit von Turbo SC-MMSE Systemen verringert und somit die Zuverlässigkeit der Datenübertragung erhöht. Eine Reihe von Simulationsergebnissen von Kapazitäts- und Durchsatzberechnungen werden vorgestellt, die die Wirksamkeit der vorgeschlagenen Algorithmen und Optimierungsverfahren in Mehrnutzerkanälen belegen. Abschließend werden außerdem verschiedene Maßnahmen zur Minimierung der Sendeleistung in Einnutzersystemen mit senderseitiger Singular-Value-Decomposition (SVD)-basierter Vorcodierung untersucht. Es wird gezeigt, dass eine Methode, welche die Leistungspegel des Senders hinsichtlich der Bitfehlerrate des iterativen Empfängers optimiert, den konventionellen Verfahren zur Leistungszuweisung überlegen ist
    corecore