1,099 research outputs found

    Estimation of origin-destination matrix from traffic counts: the state of the art

    Get PDF
    The estimation of up-to-date origin-destination matrix (ODM) from an obsolete trip data, using current available information is essential in transportation planning, traffic management and operations. Researchers from last 2 decades have explored various methods of estimating ODM using traffic count data. There are two categories of ODM; static and dynamic ODM. This paper presents studies on both the issues of static and dynamic ODM estimation, the reliability measures of the estimated matrix and also the issue of determining the set of traffic link count stations required to acquire maximum information to estimate a reliable matrix

    Estimation of origin-destination matrix from traffic counts: the state of the art

    Get PDF
    The estimation of up-to-date origin-destination matrix (ODM) from an obsolete trip data, using current available information is essential in transportation planning, traffic management and operations. Researchers from last 2 decades have explored various methods of estimating ODM using traffic count data. There are two categories of ODM; static and dynamic ODM. This paper presents studies on both the issues of static and dynamic ODM estimation, the reliability measures of the estimated matrix and also the issue of determining the set of traffic link count stations required to acquire maximum information to estimate a reliable matrix

    The path inference filter: model-based low-latency map matching of probe vehicle data

    Full text link
    We consider the problem of reconstructing vehicle trajectories from sparse sequences of GPS points, for which the sampling interval is between 10 seconds and 2 minutes. We introduce a new class of algorithms, called altogether path inference filter (PIF), that maps GPS data in real time, for a variety of trade-offs and scenarios, and with a high throughput. Numerous prior approaches in map-matching can be shown to be special cases of the path inference filter presented in this article. We present an efficient procedure for automatically training the filter on new data, with or without ground truth observations. The framework is evaluated on a large San Francisco taxi dataset and is shown to improve upon the current state of the art. This filter also provides insights about driving patterns of drivers. The path inference filter has been deployed at an industrial scale inside the Mobile Millennium traffic information system, and is used to map fleets of data in San Francisco, Sacramento, Stockholm and Porto.Comment: Preprint, 23 pages and 23 figure

    A genetic-fuzzy system modeling of trip distribution

    Get PDF
    Thesis (Doctoral)--Izmir Institute of Technology, City and Regional Planning, Izmir, 2010Includes bibliographical references (leaves: 89-96)Text in English; Abstract: Turkish and Englishix, 141 leavesTrip distribution modelling is one of the most active parts of travel demand analysis. In recent years, use of soft computing techniques has introduced effective modelling approaches to the trip distribution problem. Fuzzy Rule-Based System (FRBS) and Genetic Fuzzy Rule-Based System (GFRBS: fuzzy system improved by a knowledge base learning process with genetic algorithms) modelling of trip distribution are two of these new approaches. However, much of the potential of these techniques has not been demonstrated so far. The present study explores the potential capabilities of these approaches in an urban trip distribution problem with some new features. For this purpose, a simple FRBS and a novel GFRBS were designed to model Istanbul intra-city passenger flows. Subsequently, their accuracy, applicability, and generalizability characteristics were evaluated against the well-known gravity and neural networks based trip distribution models. The overall results show that: i) traditional doubly constrained gravity models are still simple and efficient; ii) neural networks may not show expected performance when they are forced to satisfy production-attraction constraints; iii) simply-designed FRBSs, learning from observations and expertise, are both interpretable and efficient in forecasting trip interchanges even if the data is large and noisy; and iv) use of genetic algorithms in fuzzy rule base learning considerably increases modelling performance, although it brings additional computation costs

    Residential Location, Mobility, and Travel Time: A Pilot Study in a Small-Size Italian Metropolitan Area

    Get PDF
    This research concerns the topic of Land Use and Transport Interaction (LUTI) models. In particular, the patterns between residential households' location and mobility choices are analyzed and simulated. The attributes that influence household residential location choices belong to four categories: socioeconomic and mobility attributes of households and/or of their components; land use; real-estate market; transport system. The paper presents the results of a pilot study on households' location and mobility patterns in the metropolitan area of Reggio Calabria (Southern Italy). The pilot study is divided into two stages. In the first stage, a survey allowed to collect information and identify existing patterns about residential and mobility choices of a sample of households. In the second stage, a residential location model is proposed and some preliminary calibrations are presented in a prototypal way. The pilot study could be extended and improved in terms of spatial extension and sample dimension in order to allow a complete specification-calibration-validation process of the model. The model development can support the land use-transport planning process in the Metropolitan City of Reggio Calabria

    Constrained nested logit model: formulation and estimation

    Get PDF

    Demographics imputation in marketing sector by means of machine learning

    Get PDF
    Internship Report presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data ScienceThe goal of this project is to develop a predictive model in order to impute missing values in data collected through surveys (demographics data) and evaluate its performance. Currently there are two existing issues: demographics data for each user is either incomplete or missing entirely. Current POC is an attempt to exploit the capabilities of machine learning in order to impute missing demographics data. Data cleaning, normalization, feature selection was performed prior to applying sampling techniques and training several machine learning models. The following machine learning models were trained and tested: Random Forest and Gradient Boosting. After, the metrics appropriate for the current business purposes were selected and models’ performance was evaluated. The results for the targets ‘Ethnicity’, ‘Hispanic’ and ‘Household income’ are not within the acceptable range and therefore could not be used in production at the moment. The metrics obtained with the default hyperparameters indicate that both models demonstrate similar results for ‘Hispanic’ and ‘Ethnicity’ response variables. ‘Household income’ variable seems to have the poorest results, not allowing to predict the variable with adequate accuracy. Current POC suggests that the accurate prediction of demographic variable is complex task and is accompanied by certain challenges: weak relationship between demographic variables and purchase behavior, purchase location and neighborhood and its demographic characteristics, unreliable data, sparse feature set. Further investigations on feature selection and incorporation of other data sources for the training data should be considered
    corecore