34,764 research outputs found

    On finsler entropy of smooth distributions and Stefan-Sussman foliations

    Full text link
    Using the definition of entropy of a family of increasing distances on a compact metric set given in [10] we introduce a notion of Finsler entropy for smooth distributions and Stefan-Sussmann foliations. This concept generalizes most of classical topological entropy on a compact Riemannian manifold : the entropy of a flow ([9]), of a regular foliation ([11]), of a regular distribution ([5]) and of a geometrical structure ([22]). The essential results of this paper is the nullity of the Finsler entropy for a controllable distribution and for a singular Riemannian foliation

    Entropy of geometric structures

    Full text link
    We give a notion of entropy for general gemetric structures, which generalizes well-known notions of topological entropy of vector fields and geometric entropy of foliations, and which can also be applied to singular objects, e.g. singular foliations, singular distributions, and Poisson structures. We show some basic properties for this entropy, including the \emph{additivity property}, analogous to the additivity of Clausius--Boltzmann entropy in physics. In the case of Poisson structures, entropy is a new invariant of dynamical nature, which is related to the transverse structure of the characteristic foliation by symplectic leaves.Comment: The results of this paper were announced in a talk last year in IMPA, Rio (Poisson 2010

    Singular Value Decomposition and Entropy Dimension of Fractals

    Full text link
    We analyze the singular value decomposition (SVD) and SVD entropy of Cantor fractals produced by the Kronecker product. Our primary results show that SVD entropy is a measure of image ``complexity dimension" that is invariant under the number of Kronecker-product self-iterations (i.e., fractal order). SVD entropy is therefore similar to the fractal Hausdorff complexity dimension but suitable for characterizing fractal wave phenomena. Our field-based normalization (Renyi entropy index = 1) illustrates the uncommon step-shaped and cluster-patterned distributions of the fractal singular values and their SVD entropy. As a modal measure of complexity, SVD entropy has uses for a variety of wireless communication, free-space optical, and remote sensing applications

    Distributional Property Testing in a Quantum World

    Get PDF
    A fundamental problem in statistics and learning theory is to test properties of distributions. We show that quantum computers can solve such problems with significant speed-ups. We also introduce a novel access model for quantum distributions, enabling the coherent preparation of quantum samples, and propose a general framework that can naturally handle both classical and quantum distributions in a unified manner. Our framework generalizes and improves previous quantum algorithms for testing closeness between unknown distributions, testing independence between two distributions, and estimating the Shannon / von Neumann entropy of distributions. For classical distributions our algorithms significantly improve the precision dependence of some earlier results. We also show that in our framework procedures for classical distributions can be directly lifted to the more general case of quantum distributions, and thus obtain the first speed-ups for testing properties of density operators that can be accessed coherently rather than only via sampling

    On the robustness of q-expectation values and Renyi entropy

    Full text link
    We study the robustness of functionals of probability distributions such as the R\'enyi and nonadditive S_q entropies, as well as the q-expectation values under small variations of the distributions. We focus on three important types of distribution functions, namely (i) continuous bounded (ii) discrete with finite number of states, and (iii) discrete with infinite number of states. The physical concept of robustness is contrasted with the mathematically stronger condition of stability and Lesche-stability for functionals. We explicitly demonstrate that, in the case of continuous distributions, once unbounded distributions and those leading to negative entropy are excluded, both Renyi and nonadditive S_q entropies as well as the q-expectation values are robust. For the discrete finite case, the Renyi and nonadditive S_q entropies and the q-expectation values are robust. For the infinite discrete case, where both Renyi entropy and q-expectations are known to violate Lesche-stability and stability respectively, we show that one can nevertheless state conditions which guarantee physical robustness.Comment: 6 pages, to appear in Euro Phys Let

    Optimal coding and the origins of Zipfian laws

    Full text link
    The problem of compression in standard information theory consists of assigning codes as short as possible to numbers. Here we consider the problem of optimal coding -- under an arbitrary coding scheme -- and show that it predicts Zipf's law of abbreviation, namely a tendency in natural languages for more frequent words to be shorter. We apply this result to investigate optimal coding also under so-called non-singular coding, a scheme where unique segmentation is not warranted but codes stand for a distinct number. Optimal non-singular coding predicts that the length of a word should grow approximately as the logarithm of its frequency rank, which is again consistent with Zipf's law of abbreviation. Optimal non-singular coding in combination with the maximum entropy principle also predicts Zipf's rank-frequency distribution. Furthermore, our findings on optimal non-singular coding challenge common beliefs about random typing. It turns out that random typing is in fact an optimal coding process, in stark contrast with the common assumption that it is detached from cost cutting considerations. Finally, we discuss the implications of optimal coding for the construction of a compact theory of Zipfian laws and other linguistic laws.Comment: in press in the Journal of Quantitative Linguistics; definition of concordant pair corrected, proofs polished, references update

    Complex-Valued Random Vectors and Channels: Entropy, Divergence, and Capacity

    Full text link
    Recent research has demonstrated significant achievable performance gains by exploiting circularity/non-circularity or propeness/improperness of complex-valued signals. In this paper, we investigate the influence of these properties on important information theoretic quantities such as entropy, divergence, and capacity. We prove two maximum entropy theorems that strengthen previously known results. The proof of the former theorem is based on the so-called circular analog of a given complex-valued random vector. Its introduction is supported by a characterization theorem that employs a minimum Kullback-Leibler divergence criterion. In the proof of latter theorem, on the other hand, results about the second-order structure of complex-valued random vectors are exploited. Furthermore, we address the capacity of multiple-input multiple-output (MIMO) channels. Regardless of the specific distribution of the channel parameters (noise vector and channel matrix, if modeled as random), we show that the capacity-achieving input vector is circular for a broad range of MIMO channels (including coherent and noncoherent scenarios). Finally, we investigate the situation of an improper and Gaussian distributed noise vector. We compute both capacity and capacity-achieving input vector and show that improperness increases capacity, provided that the complementary covariance matrix is exploited. Otherwise, a capacity loss occurs, for which we derive an explicit expression.Comment: 33 pages, 1 figure, slightly modified version of first paper revision submitted to IEEE Trans. Inf. Theory on October 31, 201
    • …
    corecore