274 research outputs found

    Advances in Evolutionary Algorithms

    Get PDF
    With the recent trends towards massive data sets and significant computational power, combined with evolutionary algorithmic advances evolutionary computation is becoming much more relevant to practice. Aim of the book is to present recent improvements, innovative ideas and concepts in a part of a huge EA field

    Flow networks: A characterization of geophysical fluid transport

    Get PDF
    We represent transport between different regions of a fluid domain by flow networks, constructed from the discrete representation of the Perron-Frobenius or transfer operator associated to the fluid advection dynamics. The procedure is useful to analyze fluid dynamics in geophysical contexts, as illustrated by the construction of a flow network associated to the surface circulation in the Mediterranean sea. We use network-theory tools to analyze the flow network and gain insights into transport processes. In particular we quantitatively relate dispersion and mixing characteristics, classically quantified by Lyapunov exponents, to the degree of the network nodes. A family of network entropies is defined from the network adjacency matrix, and related to the statistics of stretching in the fluid, in particular to the Lyapunov exponent field. Finally we use a network community detection algorithm, Infomap, to partition the Mediterranean network into coherent regions, i.e. areas internally well mixed, but with little fluid interchange between them.Comment: 16 pages, 15 figures. v2: published versio

    Articles indexats publicats per autors de l'ETSAB

    Get PDF
    Aquest document recull els articles publicats per investigadors de l'ETSAB en revistes del Web of Science i de Scopus des de l'any 2000 fins el 2011.Preprin

    Combining rough and fuzzy sets for feature selection

    Get PDF

    Query-driven learning for predictive analytics of data subspace cardinality

    Get PDF
    Fundamental to many predictive analytics tasks is the ability to estimate the cardinality (number of data items) of multi-dimensional data subspaces, defined by query selections over datasets. This is crucial for data analysts dealing with, e.g., interactive data subspace explorations, data subspace visualizations, and in query processing optimization. However, in many modern data systems, predictive analytics may be (i) too costly money-wise, e.g., in clouds, (ii) unreliable, e.g., in modern Big Data query engines, where accurate statistics are difficult to obtain/maintain, or (iii) infeasible, e.g., for privacy issues. We contribute a novel, query-driven, function estimation model of analyst-defined data subspace cardinality. The proposed estimation model is highly accurate in terms of prediction and accommodating the well-known selection queries: multi-dimensional range and distance-nearest neighbors (radius) queries. Our function estimation model: (i) quantizes the vectorial query space, by learning the analysts’ access patterns over a data space, (ii) associates query vectors with their corresponding cardinalities of the analyst-defined data subspaces, (iii) abstracts and employs query vectorial similarity to predict the cardinality of an unseen/unexplored data subspace, and (iv) identifies and adapts to possible changes of the query subspaces based on the theory of optimal stopping. The proposed model is decentralized, facilitating the scaling-out of such predictive analytics queries. The research significance of the model lies in that (i) it is an attractive solution when data-driven statistical techniques are undesirable or infeasible, (ii) it offers a scale-out, decentralized training solution, (iii) it is applicable to different selection query types, and (iv) it offers a performance that is superior to that of data-driven approaches

    Using AI and Robotics for EV battery cable detection.: Development and implementation of end-to-end model-free 3D instance segmentation for industrial purposes

    Get PDF
    Master's thesis in Information- and communication technology (IKT590)This thesis describes a novel method for capturing point clouds and segmenting instances of cabling found on electric vehicle battery packs. The use of cutting-edge perception algorithm architectures, such as graph-based and voxel-based convolution, in industrial autonomous lithium-ion battery pack disassembly is being investigated. The thesis focuses on the challenge of getting a desirable representation of any battery pack using an ABB robot in conjunction with a high-end structured light camera, with "end-to-end" and "model-free" as design constraints. The thesis employs self-captured datasets comprised of several battery packs that have been captured and labeled. Following that, the datasets are used to create a perception system. This thesis recommends using HDR functionality in an industrial application to capture the full dynamic range of the battery packs. To adequately depict 3D features, a three-point-of-view capture sequence is deemed necessary. A general capture process for an entire battery pack is also presented, but a next-best-scan algorithm is likely required to ensure a "close to complete" representation. Graph-based deep-learning algorithms have been shown to be capable of being scaled up to50,000inputs while still exhibiting strong performance in terms of accuracy and processing time. The results show that an instance segmenting system can be implemented in less than two seconds. Using off-the-shelf hardware, demonstrate that a 3D perception system is industrially viable and competitive with a 2D perception system

    Automatic texture classification in manufactured paper

    Get PDF
    • …
    corecore