4,601 research outputs found

    Revisiting Entropy Rate Constancy in Text

    Full text link
    The uniform information density (UID) hypothesis states that humans tend to distribute information roughly evenly across an utterance or discourse. Early evidence in support of the UID hypothesis came from Genzel & Charniak (2002), which proposed an entropy rate constancy principle based on the probability of English text under n-gram language models. We re-evaluate the claims of Genzel & Charniak (2002) with neural language models, failing to find clear evidence in support of entropy rate constancy. We conduct a range of experiments across datasets, model sizes, and languages and discuss implications for the uniform information density hypothesis and linguistic theories of efficient communication more broadly.Comment: Findings of EMNLP 202

    Chemical freeze-out in relativistic heavy-ion collisions

    Full text link
    One surprising result in relativistic heavy-ion collisions is that the abundance of various particles measured in experiments is consistent with the picture that they reach chemical equilibrium at a temperature much higher than the temperature they freeze out kinetically. Using a multiphase transport model to study particle production in these collisions, we find that the above result is due to the constancy of the entropy per particle during the evolution of the hadronic matter from the chemical to the kinetic freeze-out. We further use a hadron resonance gas model to illustrate the result from the transport model study.Comment: 5 pages, 4 figure

    Collision-dependent power law scalings in 2D gyrokinetic turbulence

    Get PDF
    Nonlinear gyrokinetics provides a suitable framework to describe short-wavelength turbulence in magnetized laboratory and astrophysical plasmas. In the electrostatic limit, this system is known to exhibit a free energy cascade towards small scales in (perpendicular) real and/or velocity space. The dissipation of free energy is always due to collisions (no matter how weak the collisionality), but may be spread out across a wide range of scales. Here, we focus on freely-decaying 2D electrostatic turbulence on sub-ion-gyroradius scales. An existing scaling theory for the turbulent cascade in the weakly collisional limit is generalized to the moderately collisional regime. In this context, non-universal power law scalings due to multiscale dissipation are predicted, and this prediction is confirmed by means of direct numerical simulations.Comment: 7 pages, 5 figures, accepted for publication in Physics of Plasma

    Configuration Complexities of Hydrogenic Atoms

    Full text link
    The Fisher-Shannon and Cramer-Rao information measures, and the LMC-like or shape complexity (i.e., the disequilibrium times the Shannon entropic power) of hydrogenic stationary states are investigated in both position and momentum spaces. First, it is shown that not only the Fisher information and the variance (then, the Cramer-Rao measure) but also the disequilibrium associated to the quantum-mechanical probability density can be explicitly expressed in terms of the three quantum numbers (n, l, m) of the corresponding state. Second, the three composite measures mentioned above are analytically, numerically and physically discussed for both ground and excited states. It is observed, in particular, that these configuration complexities do not depend on the nuclear charge Z. Moreover, the Fisher-Shannon measure is shown to quadratically depend on the principal quantum number n. Finally, sharp upper bounds to the Fisher-Shannon measure and the shape complexity of a general hydrogenic orbital are given in terms of the quantum numbers.Comment: 22 pages, 7 figures, accepted i

    Bianchi Type I Universes with Causal Bulk Viscous Cosmological Fluid

    Get PDF
    We consider the dynamics of a causal bulk viscous cosmological fluid filled constantly decelerating Bianchi type I space-time. The matter component of the Universe is assumed to satisfy a linear barotropic equation of state and the state equation of the small temperature Boltzmann gas. The resulting cosmological models satisfy the condition of smallness of the viscous stress. The time evolution of the relaxation time, temperature, bulk viscosity coefficient and comoving entropy of the dissipative fluid is also obtained.Comment: 11 pages, 5 figures, accepted for publication in International Journal of Modern Physics

    Nuclear condensation and the equation of state of nuclear matter

    Full text link
    The isothermal compression of a dilute nucleonic gas invoking cluster degrees of freedom is studied in an equilibrium statistical model; this clusterized system is found to be more stable than the pure nucleonic system. The equation of state (EoS) of this matter shows features qualitatively very similar to the one obtained from pure nucleonic gas. In the isothermal compression process, there is a sudden enhancement of clusterization at a transition density rendering features analogous to the gas-liquid phase transition in normal dilute nucleonic matter. Different observables like the caloric curves, heat capacity, isospin distillation, etc. are studied in both the models. Possible changes in the observables due to recently indicated medium modifications in the symmetry energy are also investigated.Comment: 18 pages and 11 figures. Phys. Rev. C (in press

    How fundamental are fundamental constants?

    Full text link
    I argue that the laws of physics should be independent of one's choice of units or measuring apparatus. This is the case if they are framed in terms of dimensionless numbers such as the fine structure constant, alpha. For example, the Standard Model of particle physics has 19 such dimensionless parameters whose values all observers can agree on, irrespective of what clock, rulers, scales... they use to measure them. Dimensional constants, on the other hand, such as h, c, G, e, k..., are merely human constructs whose number and values differ from one choice of units to the next. In this sense only dimensionless constants are "fundamental". Similarly, the possible time variation of dimensionless fundamental "constants" of nature is operationally well-defined and a legitimate subject of physical enquiry. By contrast, the time variation of dimensional constants such as c or G on which a good many (in my opinion, confusing) papers have been written, is a unit-dependent phenomenon on which different observers might disagree depending on their apparatus. All these confusions disappear if one asks only unit-independent questions. We provide a selection of opposing opinions in the literature and respond accordingly.Comment: Note added. 30 pages latex. 7 figures. arXiv admin note: text overlap with arXiv:hep-th/0208093 (unpublished
    corecore