48,775 research outputs found

    Entropy increase in switching systems

    Get PDF
    The relation between the complexity of a time-switched dynamics and the complexity of its control sequence depends critically on the concept of a non-autonomous pullback attractor. For instance, the switched dynamics associated with scalar dissipative affine maps has a pullback attractor consisting of singleton component sets. This entails that the complexity of the control sequence and switched dynamics, as quantified by the topological entropy, coincide. In this paper we extend the previous framework to pullback attractors with nontrivial components sets in order to gain further insights in that relation. This calls, in particular, for distinguishing two distinct contributions to the complexity of the switched dynamics. One proceeds from trajectory segments connecting different component sets of the attractor; the other contribution proceeds from trajectory segments within the component sets. We call them “macroscopic” and “microscopic” complexity, respectively, because only the first one can be measured by our analytical tools. As a result of this picture, we obtain sufficient conditions for a switching system to be more complex than its unswitched subsystems, i.e., a complexity analogue of Parrondo’s paradox

    Quantifying sudden changes in dynamical systems using symbolic networks

    Get PDF
    We characterise the evolution of a dynamical system by combining two well-known complex systems' tools, namely, symbolic ordinal analysis and networks. From the ordinal representation of a time-series we construct a network in which every node weights represents the probability of an ordinal patterns (OPs) to appear in the symbolic sequence and each edges weight represents the probability of transitions between two consecutive OPs. Several network-based diagnostics are then proposed to characterize the dynamics of different systems: logistic, tent and circle maps. We show that these diagnostics are able to capture changes produced in the dynamics as a control parameter is varied. We also apply our new measures to empirical data from semiconductor lasers and show that they are able to anticipate the polarization switchings, thus providing early warning signals of abrupt transitions.Comment: 18 pages, 9 figures, to appear in New Journal of Physic

    Renyi Entropies of Interacting Fermions from Determinantal Quantum Monte Carlo Simulations

    Full text link
    Entanglement measures such as the entanglement entropy have become an indispensable tool to identify the fundamental character of ground states of interacting quantum many-body systems. For systems of interacting spin or bosonic degrees of freedom much recent progress has been made not only in the analytical description of their respective entanglement entropies but also in their numerical classification. Systems of interacting fermionic degrees of freedom however have proved to be more difficult to control, in particular with regard to the numerical understanding of their entanglement properties. Here we report a generalization of the replica technique for the calculation of Renyi entropies to the framework of determinantal Quantum Monte Carlo simulations -- the numerical method of choice for unbiased, large-scale simulations of interacting fermionic systems. We demonstrate the strength of this approach over a recent alternative proposal based on a decomposition in free fermion Green's functions by studying the entanglement entropy of one-dimensional Hubbard systems both at zero and finite temperatures.Comment: 11 pages, 10 figure

    Fitness and entropy production in a cell population dynamics with epigenetic phenotype switching

    Full text link
    Motivated by recent understandings in the stochastic natures of gene expression, biochemical signaling, and spontaneous reversible epigenetic switchings, we study a simple deterministic cell population dynamics in which subpopulations grow with different rates and individual cells can bi-directionally switch between a small number of different epigenetic phenotypes. Two theories in the past, the population dynamics and thermodynamics of master equations, separatedly defined two important concepts in mathematical terms: the {\em fitness} in the former and the (non-adiabatic) {\em entropy production} in the latter. Both play important roles in the evolution of the cell population dynamics. The switching sustains the variations among the subpopulation growth thus continuous natural selection. As a form of Price's equation, the fitness increases with (ii) natural selection through variations and (ii)(ii) a positive covariance between the per capita growth and switching, which represents a Lamarchian-like behavior. A negative covariance balances the natural selection in a fitness steady state | "the red queen" scenario. At the same time the growth keeps the proportions of subpopulations away from the "intrinsic" switching equilibrium of individual cells, thus leads to a continous entropy production. A covariance, between the per capita growth rate and the "chemical potential" of subpopulation, counter-acts the entropy production. Analytical results are obtained for the limiting cases of growth dominating switching and vice versa.Comment: 16 page

    Computational Capacity and Energy Consumption of Complex Resistive Switch Networks

    Get PDF
    Resistive switches are a class of emerging nanoelectronics devices that exhibit a wide variety of switching characteristics closely resembling behaviors of biological synapses. Assembled into random networks, such resistive switches produce emerging behaviors far more complex than that of individual devices. This was previously demonstrated in simulations that exploit information processing within these random networks to solve tasks that require nonlinear computation as well as memory. Physical assemblies of such networks manifest complex spatial structures and basic processing capabilities often related to biologically-inspired computing. We model and simulate random resistive switch networks and analyze their computational capacities. We provide a detailed discussion of the relevant design parameters and establish the link to the physical assemblies by relating the modeling parameters to physical parameters. More globally connected networks and an increased network switching activity are means to increase the computational capacity linearly at the expense of exponentially growing energy consumption. We discuss a new modular approach that exhibits higher computational capacities and energy consumption growing linearly with the number of networks used. The results show how to optimize the trade-off between computational capacity and energy efficiency and are relevant for the design and fabrication of novel computing architectures that harness random assemblies of emerging nanodevices

    Quantum dynamics, dissipation, and asymmetry effects in quantum dot arrays

    Full text link
    We study the role of dissipation and structural defects on the time evolution of quantum dot arrays with mobile charges under external driving fields. These structures, proposed as quantum dot cellular automata, exhibit interesting quantum dynamics which we describe in terms of equations of motion for the density matrix. Using an open system approach, we study the role of asymmetries and the microscopic electron-phonon interaction on the general dynamical behavior of the charge distribution (polarization) of such systems. We find that the system response to the driving field is improved at low temperatures (and/or weak phonon coupling), before deteriorating as temperature and asymmetry increase. In addition to the study of the time evolution of polarization, we explore the linear entropy of the system in order to gain further insights into the competition between coherent evolution and dissipative processes.Comment: 11pages,9 figures(eps), submitted to PR
    • 

    corecore