109 research outputs found

    A Note on the "Optimal" Design of Disc-Shaped Heat Exchangers

    Get PDF
    The continuous quest for improving the performance of heat exchangers, together with evermore stringent volume and weight constraints, especially in enclosed applications (engines, electronic devices), stimulates the search for compact, high-performance units. One of the shapes that emerged from a vast body of research is the disc-shaped heat exchanger, in which the fluid to be heated/cooled flows through radial -often bifurcated- channels inside of a metallic disc. The disc in turn exchanges heat with the heat/cold source (the environment or another body). Several studies have been devoted to the identification of an "optimal shape" of the channels: most of them are based on prime principles, though numerical simulations abound as well. The present paper demonstrates that -for all engineering purposes- there is only one correct design procedure for such a heat exchanger, and that this procedure depends solely on the technical specifications (exchanged thermal power, materials, surface quality): the design in fact reduces to a zero-degree of freedom problem! The argument is described in detail, and it is shown that a proper application of the constraints completely identifies the shape, size and similarity indices of both the disc and the internal channels. Goal of this study is not that of "inventing" a novel heat exchanger design procedure, but that of demonstrating that -in this as in many similar cases-a straight forward application of prime principles and of diligent engineering rules may generate "optimal" designs. Of course, the resulting configurations may be a posteriori tested as to their performance, their irreversibility rates, their compliance with one or the other "techno-economical optimization methods", but it is important to realize that they enjoy a sort of "embedded" optimality

    On using the minimum energy dissipation to estimate the steady-state of a flow network and discussion about the resulting power-law:application to tree-shaped networks in HVAC systems

    Full text link
    [EN] The paper analyses how to compute the steady-state flow distribution through a given network by using the Minimum Entropy Production (MinEP) principle. For isothermal and incompressible flows, this is equivalent to the minimal dissipation of energy. The conditions that make this method equivalent to the conventional one are studied. There must exist a power-law for the energy dissipation (entropy generation) where the exponent must be the same for the whole network. To our knowledge, Niven was the first to get to this result. However he applied MinEP only to parallel pipes and unfortunately discarded it as a general method. The paper shows why it cannot be discarded yet. We discuss the role of the chosen exponent m and its link to the underlying physical phenomena. Moreover it is shown that there is a ¿hidden¿ fixed point value problem that must be studied further. The method introduced in this paper is developed specially for tree-shaped duct-networks which are frequently encountered in HVAC (Heating Ventilation and Air Conditioning) systems. The paper explains briefly what triggered this research; specifically, difficulties related with branched junctions, mainly in return-type networks.Soto Francés, VM.; Pinazo Ojer, JM.; Sarabia Escrivà, EJ.; Martínez, PJ. (2019). On using the minimum energy dissipation to estimate the steady-state of a flow network and discussion about the resulting power-law:application to tree-shaped networks in HVAC systems. Energy. 172:181-195. https://doi.org/10.1016/j.energy.2019.01.060S18119517

    Numerical Study of Mixing of Different Newtonian and Non-Newtonian Fluids in Stirred Tank

    Get PDF
    Mixing has the most common occurrence in process industries like chemical, food and polymer and plays a significant part in overall success of the processes. Stirred tanks are commonly used for mixing various types of Newtonian and non-Newtonian liquids. Impeller is the movable part and is used as the rotating device in stirred tank systems for achieving mixing. An impeller while it rotates imparts shear force in the vicinity along the peripheral zone. Literature is rich with information on various experimental and theoretical findings on the hydrodynamics and mixing behaviour of Newtonian fluids in stirred tank systems. However, with non-Newtonian fluids, limited published literature is available on the hydrodynamic behaviour of the mixing process in stirred vessels. A few available experimental works in literatures successfully explained the mixing process in a non-Newtonian system using Rushton turbine (impeller commonly used in industry). But unavailability of the theoretical prediction of the same is basically explains the motivation behind the study on the mixing of non-Newtonian fluids in stirred tank with Rushton turbine. For mixing highly viscous liquids, helical ribbon impellers are most suited. In this thesis work, it was aimed to study the computational aspects of the hydrodynamic performance of helical ribbon impeller in a highly viscous non-Newtonian system and comparing the results with helical screw ribbon impeller through computational fluid dynamics (CFD) simulation. Entropy generation minimization study is an integral part of this thesis work. Mostly, the earlier works involve use of analytical expressions from basics of mass, energy and entropy balance which has got certain limitations because of many assumptions. Here, we aimed for a detailed numerical study on the same. Also, the understanding of residence time distribution (RTD) study in a stirred tank system gives an idea on the distribution of flow structure. Although, this particular aspect has been studied by various research groups, however, some of the experimental data are not compared with numerical findings for validation. In this work it was aimed to predict RTD numerically especially by using swept volume of the impeller into consideration. A computational fluid dynamics study using Ansys Fluent was carried out to determine the mixing performance of a tank stirred with Rushton turbine. The predicted profiles of the velocity components were validated with literature data. The non-parametric Spearman’s rank order test was used to find the interaction of velocity profiles with the impeller Reynolds number and flow behavior index. The characteristic performance parameters such as power number and flow number of the impeller were predicted. The variations of entropy generation due to only viscous dissipation with Reynolds number, tank geometry, etc. were calculated for the isothermal tank. The entropy generation minimization (EGM) approach was used to optimize the performance of the non-isothermal continuous stirred tank with respect to the system parameters like inlet Reynolds number, impeller speed, and impeller clearance and impeller blade width. The numerical study of the stirred tank with helical ribbon (HR) and helical ribbon with screw (HRS) impellers was carried out successfully. The CFD models were successfully validated with the experimental power number given in literature. The power constant for Newtonian fluid (Kp) and non-Newtonian fluid (Kp(n)) were calculated and compared successfully with the literature data. The Metzner Otto or geometry constant, Ks were computed following four different methods and the best one was identified by predicting successfully the generalized power curve. The flow numbers of HRS impeller were predicted for wide range of impeller Reynolds number. The non-dimensional mixing times were varied in scattered way with impeller Reynolds number, and the dispersive flow away from the impeller shaft was observed. The entropy generations were increased with the impeller Reynolds number, and an empirical model of entropy generation with impeller Reynolds number was developed. The non-isothermal stirred tank with HR and HRS impellers were optimized employing the entropy generation minimization technique. The hydrodynamic and the residence time distribution (RTD) behavior of the viscous Newtonian fluid was studied using a tracer age distribution function, I(θ). The experimental tracer age distribution functions were predicted by CFD tools using tracer injection and swept volume methods. The predicted results were found in good agreement with the literature data. The mixing behaviour was changed from dispersion to ideal mixing state with increasing the tank Reynolds number and impeller rotations. The mixing performance parameters like holdback, segregation, number of ideal continuous stirred tank in series equivalent to single actual continuous stirred tank were also calculated to identify the necessary flow parameters and their magnitude to obtain the ideal flow distribution in the tank

    Computational Heat Transfer and Fluid Mechanics

    Get PDF
    With the advances in high-speed computer technology, complex heat transfer and fluid flow problems can be solved computationally with high accuracy. Computational modeling techniques have found a wide range of applications in diverse fields of mechanical, aerospace, energy, environmental engineering, as well as numerous industrial systems. Computational modeling has also been used extensively for performance optimization of a variety of engineering designs. The purpose of this book is to present recent advances, as well as up-to-date progress in all areas of innovative computational heat transfer and fluid mechanics, including both fundamental and practical applications. The scope of the present book includes single and multiphase flows, laminar and turbulent flows, heat and mass transfer, energy storage, heat exchangers, respiratory flows and heat transfer, biomedical applications, porous media, and optimization. In addition, this book provides guidelines for engineers and researchers in computational modeling and simulations in fluid mechanics and heat transfer

    Rheology

    Get PDF
    This book contains a wealth of useful information on current rheology research. By covering a broad variety of rheology-related topics, this e-book is addressed to a wide spectrum of academic and applied researchers and scientists but it could also prove useful to industry specialists. The subject areas include, polymer gels, food rheology, drilling fluids and liquid crystals among others

    Theoretical arguments on exergy method and non-equilibrium in nuclear processes

    Get PDF
    The present Ph.D. thesis aims at discussing theoretical aspects and arguments concerning thermodynamic methods and applications to fission and fusion nuclear plants. All parts of the thesis are rooted in the ground of the scientific literature, and all outcomes and conclusions corroborate the conceptual building with no disprove of any foundations constituting the framework accepted and shared by the whole scientific community. Though, clarifications, extensions, generalizations and applications of concepts and definitions represent primary outcomes deemed by the author beneficial for a rational and systematic perspective of Physics and Thermodynamics in the research and applications to technological and industrial developments. This abstract attempt to summarize state-of-the-art and references, methods, achievements, original results, future perspectives and is followed by an index breaking down all sections to enable an overview on the way the thesis is organized. The mechanical aspect of the entropy-exergy relationship, together with the thermal aspect usually considered, represents the outset of the research and one of the central topics. This very aspect leads to a formulation of physical exergy and chemical exergy based on both useful work and useful heat, or useful work and useful mass, representing first outcomes based on the concept of available energy of a thermodynamic system interacting with a reservoir. By virtue of the entropy-exergy relationship, this approach suggests that a mechanical entropy contribution can be defined, in addition to the already used thermal entropy contribution, for work interaction due to pressure and volume variations. The mechanical entropy is related to energy transfer through work interaction, and it is complementary to the thermal entropy that accounts energy transfer by means of heat interaction. Then, the logical sequence to get mechanical exergy expression to evaluate useful work withdrawn from available energy is demonstrated. Based on mechanical exergy expression, the mechanical entropy set forth is deduced in a general form valid for any process. Finally, the formulation of physical exergy is proposed that summarizes the contribution of either heat or work interactions and related thermal exergy as well as mechanical exergy that both result as the outcome from the available energy of the composite of the system interacting with a reservoir. This formulation contains an additional term that takes into account the volume and, consequently, the pressure that allow to evaluate exergy with respect to the reservoir characterized by constant pressure other than constant temperature. The basis and related conclusions of this paper are not in contrast with principles and theoretical framework of thermodynamics and highlight a more extended approach to exergy definitions already reported in literature that remain the reference ground of present analysis. The literature reports that equality of temperature, equality of potential and equality of pressure between a system and a reservoir are necessary conditions for the stable equilibrium of the system-reservoir composite or, in the opposite and equivalent logical inference, that stable equilibrium is a sufficient condition for equality. A novelty of the present study is to prove that equality of temperature, potential and pressure is also a sufficient condition for stable equilibrium, in addition to necessity, implying that stable equilibrium is a condition also necessary, in addition to sufficiency, for equality. A subsequent implication is that the proof of the sufficiency of equality (or the necessity of stable equilibrium) is attained by means of the generalization of the entropy property, derived from the generalization of exergy property, which is used to demonstrate that stable equilibrium is a logical consequence of equality of generalized potential. This proof is underpinned by the Second Law statement and the Maximum-Entropy Principle based on the generalized entropy which depends on temperature, potential and pressure of the reservoir. The conclusion, based on these two novel concepts, consists of the theorem of necessity and sufficiency of stable equilibrium for equality of generalized potentials within a composite constituted by a system and a reservoir. Among all statements of Second Law, the existence and uniqueness of stable equilibrium, for each given value of energy content and composition of constituents of any system, has been adopted to define thermodynamic entropy by means of the impossibility of Perpetual Motion Machine of the Second Kind (PMM2) which is a consequence of the Second Law. Equality of temperature, chemical potential and pressure in many-particle systems are proved to be necessary conditions for the stable equilibrium. The proofs assume the stable equilibrium and derive, through the Highest-Entropy Principle, equality of temperature, chemical potential and pressure as a consequence. In this regard, a first novelty of the present research is to demonstrate that equality is also a sufficient condition, in addition to necessity, for stable equilibrium implying that stable equilibrium is a condition also necessary, in addition to sufficiency, for equality of temperature potential and pressure addressed to as generalized potential. The second novelty is that the proof of sufficiency of equality, or necessity of stable equilibrium, is achieved by means of a generalization of entropy property, derived from a generalized definition of exergy, both being state and additive properties accounting for heat, mass and work interactions of the system underpinning the definition of Highest-Generalized-Entropy Principle adopted in the proof. To complement the physical meaning and the reasons behind the need of a generalized definition of thermodynamic entropy, it is proposed a logical relation of its formulation on the base of Gibbs equation expressing the First Law. Moreover, a step forward is the extension of the canonical Equation of State in the perspective of thermal and chemical aspect of microscopic configurations of a system related to inter-particle kinetic energy and inter-particle potential energy determining macroscopic parameters. As a consequence, a generalized State Equation is formulated accounting for thermal, chemical and mechanical thermodynamic potentials characterizing any system in any state. As far as the Non-Equilibrium Thermodynamic is concerned, the present research aims at discussing the hierarchical structure of so-called mesoscopic systems configuration. In this regard, thermodynamic and informational aspects of entropy concept are highlighted to propose a unitary perspective of its definitions as an inherent property of any system in any state, both physical and informational. The dualism and the relation between physical nature of information and the informational content of physical states of matter and phenomena play a fundamental role in the description of multi-scale systems characterized by hierarchical configurations. A method is proposed to generalize thermodynamic and informational entropy property and characterize the hierarchical structure of its canonical definition at macroscopic and microscopic levels of a system described in the domain of classical and quantum physics. The conceptual schema is based on dualisms and symmetries inherent to the geometric and kinematic configurations and interactions occurring in many-particle and few-particle thermodynamic systems. The hierarchical configuration of particles and sub-particles, representing the constitutive elements of physical systems, breaks down into levels characterized by particle masses subdivision, implying positions and velocities degrees of freedom multiplication. This hierarchy accommodates the allocation of phenomena and processes from higher to lower levels in the respect of the equipartition theorem of energy. However, the opposite and reversible process, from lower to higher level, is impossible by virtue of the Second Law, expressed as impossibility of Perpetual Motion Machine of the Second Kind (PMM2) remaining valid at all hierarchical levels, and the non-existence of Maxwell’s demon. Based on the generalized definition of entropy property, the hierarchical structure of entropy contribution and production balance, determined by degrees of freedom and constraints of systems configuration, is established. Moreover, as a consequence of the Second Law, the non-equipartition theorem of entropy is enunciated, which would be complementary to the equipartition theorem of energy derived from the First Law. A section is specifically dedicated to specialize Second Law analyses to characterize balances of properties, and efficiencies of processes, occurring in elemental fission and fusion nuclear reactions. The conceptual schema is underpinned by the paradigm of microscopic few-particle systems and the inter-particle kinetic energy and binding potential energy determined by interactions among atomic nuclei and subatomic particles in non-equilibrium states along irreversible phenomena. The definition here proposed for thermodynamic entropy calculation is based on energy and exergy both being measurable properties by means of those values calculated from particles mass defect and used to directly derive entropy balances along nuclear processes occurring in operating industrial plants. Finally, it is proposed a preliminary exergy analysis of EU DEMO pulsed fusion power plant considering the Primary Heat Transfer Systems, the Intermediate Heat Transfer System (IHTS) including the Energy Storage System (ESS) as a first option to ensure the continuity of electric power released to the grid. A second option here considered is a methane fired auxiliary boiler replacing the ESS. The Power Conversion System (PCS) performance is evaluated as well in the overall balance. The performance analysis is based on the exergy method to correctly assess the amount of exergy destruction determined by irreversible phenomena along the whole cyclic process. The pulse and dwell phases of the reactor operation are evaluated considering the state of the art of the ESS adopting molten salts alternate heating and storage in a hot tank followed by a cooling and recovery of molten salt in a cold tank to ensure the continuity of power release to the electrical grid. An alternative plant configuration is evaluated on the basis of an auxiliary boiler replacing the ESS with a 10% of the power produced by the reactor during pulse mode. The conclusive summary of main achievements and original outcomes is followed by proposals of future developments in different fields of theoretical and applied research and technology. These themes represent an outlook on the opportunities and initiatives originating from the passionate dedication effort spent along the here ended Doctorate

    ECOS 2012

    Get PDF
    The 8-volume set contains the Proceedings of the 25th ECOS 2012 International Conference, Perugia, Italy, June 26th to June 29th, 2012. ECOS is an acronym for Efficiency, Cost, Optimization and Simulation (of energy conversion systems and processes), summarizing the topics covered in ECOS: Thermodynamics, Heat and Mass Transfer, Exergy and Second Law Analysis, Process Integration and Heat Exchanger Networks, Fluid Dynamics and Power Plant Components, Fuel Cells, Simulation of Energy Conversion Systems, Renewable Energies, Thermo-Economic Analysis and Optimisation, Combustion, Chemical Reactors, Carbon Capture and Sequestration, Building/Urban/Complex Energy Systems, Water Desalination and Use of Water Resources, Energy Systems- Environmental and Sustainability Issues, System Operation/ Control/Diagnosis and Prognosis, Industrial Ecology

    Bibliography of Lewis Research Center technical publications announced in 1988

    Get PDF
    This bibliography contains abstracts of the technical reports that resulted from the scientific and engineering work performed and managed by the Lewis Research Center in 1988. Subject, author, and corporate source indexes are also included. All the publications were announced in the 1988 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses

    The Fifth Annual Thermal and Fluids Analysis Workshop

    Get PDF
    The Fifth Annual Thermal and Fluids Analysis Workshop was held at the Ohio Aerospace Institute, Brook Park, Ohio, cosponsored by NASA Lewis Research Center and the Ohio Aerospace Institute, 16-20 Aug. 1993. The workshop consisted of classes, vendor demonstrations, and paper sessions. The classes and vendor demonstrations provided participants with the information on widely used tools for thermal and fluid analysis. The paper sessions provided a forum for the exchange of information and ideas among thermal and fluids analysts. Paper topics included advances and uses of established thermal and fluids computer codes (such as SINDA and TRASYS) as well as unique modeling techniques and applications
    corecore