445 research outputs found

    Thematic clusters in the field of gas turbine thermal management: a co-word analysis during a century

    Get PDF
    The research aims to visualize and analyze the co-word network and thematic clusters of the intellectual structure in gas turbine thermal management during 1919-2020. The study is applied research in terms of the purpose, which is conducted with a descriptive approach, scientometrics indicators, techniques of co-word, and social network analysis. Data analysis and visualization of the co-word network were represented by VoS­Viewer, SPSS, UCINet, and python Software. The top scientific products in the last century were related to engineering subject area and published by the USA country. Seven main clusters were identified for the index keywords, and 20 main clusters were recognized for the author keywords in Scopus regarding the network structure and thematic clusters based on the co-occurrences. Moreover, 38 clusters were identified based on the hierarchical clusters. The clusters, namely heat flux calculations and radiation effects, thermal performance optimization, and operational considerations, have central and major positions in this field and have more potential to maintain and develop themselves in the future. The future of Research and Development (R&D) activities in the area will be focused on novel cycles, heat map development, and Techno-Economic and Risk Analysis (TERA) by utilizing systematic approaches for the identification of heat sinks and sources, fluid modeling, and environmental considerations. In addition, the emerging contributors in the field will be advanced manufacturing and material considerations

    Entropy generation assessment for wall-bounded turbulent shear flows based on the Reynolds Analogy assumptions

    Get PDF
    Heat transfer modeling plays a major role in design and optimization of modern and efficient thermal-fluid systems. Further, turbulent flows are thermodynamic processes, and thus, the second law of thermodynamics can be used for critical evaluations of such heat transfer models. However, currently available heat transfer models suffer from a fundamental shortcoming: their development is based on the general notion that accurate prediction of the flow field will guarantee an appropriate prediction of the thermal field, known as the . In this work, an assessment of the capability of the in predicting turbulent heat transfer when applied to shear flows of fluids of different Prandtl numbers will be given. Towards this, a detailed analysis of the predictive capabilities of the concerning entropy generation is presented for steady and unsteady state simulations. It turns out that the provides acceptable results only for mean entropy generation, while fails to predict entropy generation at small/sub-grid scales

    Modeling and Simulation of Metallurgical Processes in Ironmaking and Steelmaking

    Get PDF
    In recent years, improving the sustainability of the steel industry and reducing its CO2 emissions has become a global focus. To achieve this goal, further process optimization in terms of energy and resource efficiency and the development of new processes and process routes are necessary. Modeling and simulation have established themselves as invaluable sources of information for otherwise unknown process parameters and as an alternative to plant trials that involves lower costs, risks, and time. Models also open up new possibilities for model-based control of metallurgical processes. This Special Issue focuses on recent advances in the modeling and simulation of unit processes in iron and steelmaking. It includes reviews on the fundamentals of modeling and simulation of metallurgical processes, as well as contributions from the areas of iron reduction/ironmaking, steelmaking via the primary and secondary route, and continuous casting

    Estimation of Entropy Generation in a SCR-DeNOx System with AdBlue Spray Dynamic Using Large Eddy Simulation

    Get PDF
    In this work, the entropy generation analysis is extended to the multi-phase fluid flow within a Large Eddy Simulation (LES) framework. The selected study case consists of a generic selective catalytic reduction (SCR) configuration in which the water/AdBlue is injected into a cross-flow of the internal combustion (IC) engine exhaust gas. The adopted numerical modules are first assessed by comparing with experimental data for film thickness in the case of AdBlue injection and then with H₂O mass fraction and temperature for water injection case. Subsequently, the impact of heat transfer, fluid flow, phase change, mixing and chemical reaction due to AdBlue injection on the entropy generation is assessed. Hence, the individual contributions of viscous and heat dissipation together with the species mixing, chemical reaction during the thermal decomposition of urea into NH₃ and dispersed phase are especially evaluated and analysed. In comparison to the shares of the viscous and mixing processes, the entropy generation is predominated by the heat, chemical and dispersed phase contributions. The influence of the operating parameters such as exhaust gas temperature, flow rate and AdBlue injection on entropy generation is discussed in details. Using a suitable measures, the irreversibility map and some necessary inferences are also provided

    Droplet Dynamics Under Extreme Ambient Conditions

    Get PDF
    This open access book presents the main results of the Collaborative Research Center SFB-TRR 75, which spanned the period from 2010 to 2022. Scientists from a variety of disciplines, ranging from thermodynamics, fluid mechanics, and electrical engineering to chemistry, mathematics, computer science, and visualization, worked together toward the overarching goal of SFB-TRR 75, to gain a deep physical understanding of fundamental droplet processes, especially those that occur under extreme ambient conditions. These are, for example, near critical thermodynamic conditions, processes at very low temperatures, under the influence of strong electric fields, or in situations with extreme gradients of boundary conditions. The fundamental understanding is a prerequisite for the prediction and optimisation of engineering systems with droplets and sprays, as well as for the prediction of droplet-related phenomena in nature. The book includes results from experimental investigations as well as new analytical and numerical descriptions on different spatial and temporal scales. The contents of the book have been organised according to methodological fundamentals, phenomena associated with free single drops, drop clusters and sprays, and drop and spray phenomena involving wall interactions

    Volume 2: Explicit, multistage upwind schemes for Euler and Navier-Stokes equations

    Get PDF
    The objective of this study was to develop a high-resolution-explicit-multi-block numerical algorithm, suitable for efficient computation of the three-dimensional, time-dependent Euler and Navier-Stokes equations. The resulting algorithm has employed a finite volume approach, using monotonic upstream schemes for conservation laws (MUSCL)-type differencing to obtain state variables at cell interface. Variable interpolations were written in the k-scheme formulation. Inviscid fluxes were calculated via Roe's flux-difference splitting, and van Leer's flux-vector splitting techniques, which are considered state of the art. The viscous terms were discretized using a second-order, central-difference operator. Two classes of explicit time integration has been investigated for solving the compressible inviscid/viscous flow problems--two-state predictor-corrector schemes, and multistage time-stepping schemes. The coefficients of the multistage time-stepping schemes have been modified successfully to achieve better performance with upwind differencing. A technique was developed to optimize the coefficients for good high-frequency damping at relatively high CFL numbers. Local time-stepping, implicit residual smoothing, and multigrid procedure were added to the explicit time stepping scheme to accelerate convergence to steady-state. The developed algorithm was implemented successfully in a multi-block code, which provides complete topological and geometric flexibility. The only requirement is C degree continuity of the grid across the block interface. The algorithm has been validated on a diverse set of three-dimensional test cases of increasing complexity. The cases studied were: (1) supersonic corner flow; (2) supersonic plume flow; (3) laminar and turbulent flow over a flat plate; (4) transonic flow over an ONERA M6 wing; and (5) unsteady flow of a compressible jet impinging on a ground plane (with and without cross flow). The emphasis of the test cases was validation of code, and assessment of performance, as well as demonstration of flexibility

    Heat removal in axial flow high pressure gas turbine

    Get PDF
    The demand for high power in aircraft gas turbine engines as well as industrial gas turbine prime mover promotes increasing the turbine entry temperature, the mass flow rate and the overall pressure ratio. High turbine entry temperature is however the most convenient way to increase the thrust without requiring a large change in the engine size. This research is focused on improving the internal cooling of high pressure turbine blade by investigating a range of solutions that can contribute to the more effective removal of heat when compared with existing configuration. The role played by the shape of the internal blade passages is investigated with numerical methods. In addition, the application of mist air as a means of enhanced heat removal is studied. The research covers three main area of investigation. The first one is concerned with the supply of mist on to the coolant flow as a mean to enhancing heat transfer. The second area of investigation is the manipulation of the secondary flow through cross-section variation as a means to augment heat transfer. Lastly a combination of a number of geometrical features in the passage is investigated. A promising technique to significantly improve heat transfer is to inject liquid droplets into the coolant flow. The droplets which will evaporate after travelling a certain distance, act as a cooling sink which consequently promote added heat removal. Due to the promising results of mist cooling in the literature, this research investigated its effect on a roughened cooling passage with five levels of mist mass percentages. In order to validate the numerical model, two stages were carried out. First, one single-phase flow case was validated against experimental results available in the open literature. Analysing the effect of the rotational force, on both flow physics and heat transfer, on the ribbed channel was the main concern of this investigation. Furthermore, the computational results using mist injection were also validated against the experimental results available in the literature. Injection of mist in the coolant flow helped achieve up to a 300% increase in the average flow temperature of the stream, therefore in extracting significantly more heat from the wall. The Nusselt number increased by 97% for the rotating leading edge at 5% mist injection. In the case of air only, the heat transfers decrease in the second passage, while in the mist case, the heat transfer tends to increase in the second passage. Heat transfer increases quasi linearly with the increase of the mist percentage when there is no rotation. However, in the presence of rotation, the heat transfers increase with an increase in mist content up to 4%, thereafter the heat transfer whilst still rising does so more gradually. The second part of this research studies the effect of non-uniform cross- section on the secondary flow and heat transfer in order to identify a preferential design for the blade cooling internal passage. Four different cross-sections were investigated. All cases start with square cross-section which then change all the way until it reaches the 180 degree turn before it changes back to square cross-section at the outlet. All cases were simulated at four different speeds. At low speeds the rectangle and trapezoidal cross-section achieved high heat transfer. At high speed the pentagonal and rectangular cross-sections achieved high heat transfer. Pressure loss is accounted for while making use of the thermal performance factor parameter which accounts for both heat transfer and pressure loss. The pentagonal cross-section showed high potential in terms of the thermal performance factor with a value over 0.8 and higher by 33% when compared to the rectangular case. In the final section multiple enhancement techniques are combined in the sudden expansion case, such as, ribs, slots and ribbed slot. The maximum heat enhancement is achieved once all previous techniques are used together. Under these circumstances the Nusselt number increased by 60% in the proposed new design

    Droplet Dynamics Under Extreme Ambient Conditions

    Get PDF
    This open access book presents the main results of the Collaborative Research Center SFB-TRR 75, which spanned the period from 2010 to 2022. Scientists from a variety of disciplines, ranging from thermodynamics, fluid mechanics, and electrical engineering to chemistry, mathematics, computer science, and visualization, worked together toward the overarching goal of SFB-TRR 75, to gain a deep physical understanding of fundamental droplet processes, especially those that occur under extreme ambient conditions. These are, for example, near critical thermodynamic conditions, processes at very low temperatures, under the influence of strong electric fields, or in situations with extreme gradients of boundary conditions. The fundamental understanding is a prerequisite for the prediction and optimisation of engineering systems with droplets and sprays, as well as for the prediction of droplet-related phenomena in nature. The book includes results from experimental investigations as well as new analytical and numerical descriptions on different spatial and temporal scales. The contents of the book have been organised according to methodological fundamentals, phenomena associated with free single drops, drop clusters and sprays, and drop and spray phenomena involving wall interactions
    corecore