3,433 research outputs found

    Entropy based independent learning in anonymous multi-agent settings

    Get PDF
    Efficient sequential matching of supply and demand is a problem of interest in many online to offline services. For instance, Uber, Lyft, Grab for matching taxis to customers; Ubereats, Deliveroo, FoodPanda etc for matching restaurants to customers. In these online to offline service problems, individuals who are responsible for supply (e.g., taxi drivers, delivery bikes or delivery van drivers) earn more by being at the "right" place at the "right" time. We are interested in developing approaches that learn to guide individuals to be in the "right" place at the "right" time (to maximize revenue) in the presence of other similar "learning" individuals and only local aggregated observation of other agents states (e.g., only number of other taxis in same zone as current agent). A key characteristic of the domains of interest is that the interactions between individuals are anonymous, i.e., the outcome of an interaction (competing for demand) is dependent only on the number and not on the identity of the agents. We model these problems using the Anonymous MARL (AyMARL) model. The key contribution of this paper is in employing principle of maximum entropy to provide a general framework of independent learning that is both empirically effective (even with only local aggregated information of agent population distribution) and theoretically justified. Finally, our approaches provide a significant improvement with respect to joint and individual revenue on a generic simulator for online to offline services and a real world taxi problem over existing approaches. More importantly, this is achieved while having the least variance in revenues earned by the learning individuals, an indicator of fairness

    Collaboration in Social Networks

    Full text link
    The very notion of social network implies that linked individuals interact repeatedly with each other. This allows them not only to learn successful strategies and adapt to them, but also to condition their own behavior on the behavior of others, in a strategic forward looking manner. Game theory of repeated games shows that these circumstances are conducive to the emergence of collaboration in simple games of two players. We investigate the extension of this concept to the case where players are engaged in a local contribution game and show that rationality and credibility of threats identify a class of Nash equilibria -- that we call "collaborative equilibria" -- that have a precise interpretation in terms of sub-graphs of the social network. For large network games, the number of such equilibria is exponentially large in the number of players. When incentives to defect are small, equilibria are supported by local structures whereas when incentives exceed a threshold they acquire a non-local nature, which requires a "critical mass" of more than a given fraction of the players to collaborate. Therefore, when incentives are high, an individual deviation typically causes the collapse of collaboration across the whole system. At the same time, higher incentives to defect typically support equilibria with a higher density of collaborators. The resulting picture conforms with several results in sociology and in the experimental literature on game theory, such as the prevalence of collaboration in denser groups and in the structural hubs of sparse networks
    • …
    corecore