217 research outputs found

    The combustion mitigation of methane as a non-CO2 greenhouse gas

    Get PDF
    These research results have received funding from the EU H2020 Programme (No. 689772) and from MCTI/RNP-Brazil under the HPC4E Project, grant agreement no 689772

    Multifunctional Adsorbent Structures for Air Purification

    Get PDF

    A Novel Method for Pre-combustion CO2 Capture in Fluidized Bed

    Get PDF
    La comunidad internacional está realizando enormes esfuerzos para mitigar los efectos de las emisiones de gases de efecto invernadero (GEI) en el cambio climático. Aproximadamente le 25% de las emisiones globales de GEI (fundamentalmente CO2) son generados por la combustión de combustibles fósiles en el sector eléctrico. La captura y almacenamiento de CO2 se ha propuesto como una alternativa para reducir las emisiones de GEI en centrales térmicas. Numerosas tecnologías para la captura de CO2 se han desarrollado en los últimos años, fundamentalmente en tres líneas tecnológicas: postcombustión, oxicombustión y precombustión. Esta tesis presenta un nuevo método para la captura de CO2 en precombustión, produciendo hidrógeno a partir de carbón, sin emisiones de GEI. El objetivo principal de este trabajo ha sido desarrollar un modelo completo, mediante herramientas de fluido dinámica computacional (CFD), del proceso de reformado de un gas de síntesis con alto contenido en metano combinado con la captura de CO2 mediante adsorción con sorbentes sólidos regenerables. Este proceso es conocido como reformado de metano mejorado por adsorción (o SE-SMR, su acrónimo en inglés). SE-SMR representa una novedosa y eficiente energéticamente ruta para la producción de hidrógeno con captura in situ de CO2. Este proceso ha sido estudiado en un lecho fluido burbujeante, usando sorbentes sólidos de óxido de calcio como captores de CO2. Dos sorbentes sólidos han sido estudiados en laboratorio: uno natural (Dolomita) y uno sintético (CaO- Ca12Al14O33). Además, varios tratamientos han sido desarrollados para mejorar la capacidad de captura de estos sorbentes. Un completo modelo CFD del proceso de SE-SMR ha sido desarrollado. Una aproximación Euleriana-Euleriana ha sido combinada con la Teoría Cinética de Flujos Granulares para simular la fluidodinámica del lecho fluido burbujeante. Los reacciones químicas de reformado y carbonatación han sido implementadas en el modelo CFD. Se ha incluido un modelo detallado de captura de CO2 para simular el comportamiento de los diferentes sorbentes sometidos a diferentes pretratamientos para mejorar su rendimiento. Asimismo, un modelo de arrastre de partículas ha sido desarrollado para reducir el coste computacional de las simulaciones a escala semi-industrial. Se ha llevado a cabo una extensa campaña de simulaciones para validar el modelo a escala de laboratorio y semi-industrial. Las simulaciones CFD han sido combinadas con un Diseño de Experimentos Robusto, con el objetivo predecir y evaluar la sensibilidad del proceso SE-SMR a diversos factores operativos

    Construction and Formulation of Calculation Models for Thermal Swing Adsorption Reactor Modelling: Application in Post-Combustion Carbon Capture

    Get PDF
    Carbon dioxide capture from combustion-based energy production emissions is one potential method for climate change mitigation and adsorption-based post-combustion carbon capture is currently under research as a potential technology. The main objective of this thesis was to construct and formulate suitable calculation models for the purpose of modelling a thermal swing adsorption reactor in post-combustion carbon capture from flue gas. In the process, the adsorption step would be conducted at a low temperature of 283 K, while the desorption step would include a high temperature carbon dioxide rich purge gas as the desorption medium. The models to be built were chosen to be a one-dimensional Python-based model and a two-dimensional computational fluid dynamics model using Ansys Fluent software with user-defined functions being utilized. As an initial step, a vast literature review was conducted in order to gain knowledge on the basics of adsorption and adsorption processes, the most important adsorption process parameters and indicators, as well as thermal swing adsorption in the context of post-combustion carbon capture. Literature review also preceded the model construction process, as the heat and mass transfer models for the one-dimensional calculation model and the adsorption isotherm models and parameters for both calculation models were gathered from previous studies in the field. Following the literature review, the construction process of the calculation models began, which included a significant amount of trial-and-error. First, the one-dimensional model was built, followed by the two-dimensional model. After both models were deemed to represent the behavior of a thermal swing adsorption reactor, the calculations were conducted with relevant data gathered from the calculations. After the calculations, the data from both models were compared and analyzed. The adsorption step results were considered to be comparable, as the results from the both models were very similar. In the desorption step, however, variation in the results was apparent. The initial carbon dioxide adsorbent loading levels were higher in the two-dimensional model. This was accounted to be due to numerical inaccuracy of the computational fluid dynamics model, which was also further analyzed. The effect of desorption temperature was a key consideration in the modelling work. Desorption temperature level had a significant role on the adsorbent loading levels in the process cycle and the temperature level should be chosen to fit the process needs as a whole. Thermal swing adsorption -based post-combustion carbon capture possesses many challenges, but it can potentially be utilized to capture at least a part of the carbon dioxide from flue gases. As a conclusion, the objective of constructing the calculation models can be thought to be met, when considering the results as a whole. For future research, the models should be improved and further developed to better represent actual reactor conditions. A two-dimensional Python-based model could provide a highly modifiable modelling tool with computational cost control.Hiilidioksidin talteenotto polttoon perustuvan energiantuotannon päästöistä on yksi potentiaalinen tapa hillitä ilmastonmuutosta ja adsorptioon perustuvia poltonjälkeisiä hiilidioksidin talteenottomenetelmiä tutkitaan potentiaalisena teknologiana tälle. Tämän diplomityön pääasiallinen tavoite oli rakentaa ja muotoilla sopivat laskentamallit lämpövaihteluadsorptioon pohjautuvan poltonjälkeisen hiilidioksidin talteenoton reaktorimallintamista varten. Prosessissa adsorptiovaihe toteutettaisiin matalassa 283 K:n lämpötilassa ja desorptiovaiheessa korkeassa lämpötilassa oleva korkean hiilidioksidipitoisuuden omaava tuotekaasu toimisi huuhtelukaasuna. Rakennattaviksi malleiksi valittiin yksiulotteinen, Python-koodikieleen perustuva malli sekä kaksiulotteinen, laskennallisen virtausdynamiikan malli Ansys Fluent -ohjelmistolla käyttäjän määrittelemiä funktioita (user-defined function) hyödyntäen. Työn alkuvaiheessa suoritettiin laaja kirjallisuuskatsaus yleistiedon keräämiseksi adsorptiosta, adsorptioprosesseista, niiden tärkeimmistä parametreista ja indikaattoreista sekä lämpövaihteluadsorptiosta poltonjälkeisen hiilidioksidin talteenoton kontekstissa. Kirjallisuuskatsaus edelsi myös laskentamallien rakentamista, sillä lämmön- ja aineensiirtomallit yksiulotteiseen laskentamalliin ja adsorptioisotermimallit ja -parametrit molempiin laskentamalleihin valittiin aikaisemmista alan tutkimuksista. Kirjallisuuskatsauksen jälkeen laskentamallit rakennettiin. Mallienrakennusprosessiin sisältyi paljon yritystä ja erehdystä. Yksiulotteinen malli rakennettiin ensin ja sitä seurasi kaksiulotteisen mallin rakentaminen. Kun molempien mallien oltiin todettu edustavan lämpövaihteluadsorptioreaktorin toimintaa, laskennat suoritettiin ja olennainen data laskennoista kerättiin. Laskentojen jälkeen molempien mallien dataa vertailtiin ja analysoitiin. Adsorptiovaiheen tuloksien todettiin olevan vertailukelpoisia, sillä molemmat mallit tuottivat samankaltaisia tuloksia. Desorptiovaiheen tuloksissa oli kuitenkin huomattavia eroavaisuuksia. Kaksiulotteisessa mallissa alkuvaiheen adsorbenttikuormitus hiilidioksidin osalta oli suurempi. Tämän katsottiin johtuvan numeerisesta epätarkkuudesta, jota analysoitiin tarkemmin. Desorptiolämpötilan vaikutus oli tärkeä näkökulma mallinnuksessa. Tällä lämpötilalla oli suuri vaikutus adsorbentin kuormitustasoihin prosessissa ja lämpötilan valinta tulisikin olla sopiva koko prosessia ajatellen. Lämpövaihteluadsorptioon perustuvaan poltonjälkeiseen hiilidioksidin talteenottoon liittyy useita haasteita, mutta sitä voidaan potentiaalisesti hyödyntää talteenottamaan vähintään osa savukaasujen hiilidioksidista. Yhteenvetona voidaan todeta, että laskentamallien rakentamisen ja muotoilun tavoite saavutettiin työn aikana, kun laskentatuloksia tarkastellaan kokonaisuutena. Tulevaisuuden tutkimustyötä varten malleja pitää kuitenkin parantaa ja jatkokehittää, jotta ne vastaisivat paremmin oikeita reaktoriolosuhteita. Kaksiulotteinen Pythoniin perustuva malli voisi tarjota monipuolisesti muokattavissa olevan ja laskentakustannuksiltaan hallitun mallinnustyökalun

    THIESEL 2020.Thermo-and Fluid Dynamic Processes in Direct Injection Engines.8th-11th September

    Full text link
    'The THIESEL 2020 Conference on Thermo-and Fluid Dynamic Processes in Direct Injection Engines planned in Valencia (Spain) for 8th to 11th September 2020 has been successfully held in a virtual format, due to the COVID19 pandemic. In spite of the very tough environmental demands, combustion engines will probably remain the main propulsion system in transport for the next 20 to 50 years, at least for as long as alternative solutions cannot provide the flexibility expected by customers of the 21st century. But it needs to adapt to the new times, and so research in combustion engines is nowadays mostly focused on the new challenges posed by hybridization and downsizing. The topics presented in the papers of the conference include traditional ones, such as Injection & Sprays, Combustion, but also Alternative Fuels, as well as papers dedicated specifically to CO2 Reduction and Emissions Abatement.Papers stem from the Academic Research sector as well as from the IndustryXandra Marcelle, M.; Desantes Fernández, JM. (2020). THIESEL 2020.Thermo-and Fluid Dynamic Processes in Direct Injection Engines.8th-11th September. Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/150759EDITORIA

    Thermo-economic analysis of an oxygen production plant powered by an innovative energy recovery system

    Full text link
    [EN] Oxy-fuel combustion is considered an attractive alternative to reduce pollutant emissions, which uses high-purity oxygen mixed instead of air for combustion processes. However, purchasing large amounts of high-purity oxygen may be unprofitable for certain industrial sectors, discouraging its implementation. Considering this, the potential of an oxygen production cycle for factories using oxy-fuel combustion is studied by performing a thermo-economic analysis where high-purity oxygen, electricity, and natural gas prices are considered. Oxygen is produced by membrane means, where mixed ionic-electronic conducting membranes are used, which require high temperatures and pressure gradients to work properly. A set of turbochargers is implemented, chosen by scaling an off-the-shelf model, what introduces an innovative way of waste energy recovering for improving the performance of the cycle. The whole cycle is powered by waste heat from high temperature flue gases, and it is sized for a ceramic manufacturing factory. In this work, two cases are analysed, differentiated by considering additional heating and the vacuum generation method in the oxygen line. The first case exhibits smaller production levels, although better profitability (31¿€t¿1), whereas the second case displays higher production levels and production costs (33¿€t¿1). Both cases are competitive concerning the average price of high-purity oxygen, supposing an average of 50¿€t¿1 in wholesale markets, proving the potential of the proposed alternative for oxygen production.This research work has been supported by Grant PDC2021120821-I00 funded by MCIN/AEI/10.13039/501100011033 and by European Union NextGenerationEU/PRTR. This work has also been supported by Grant UPV-SOLGEN-79674 funded by the Vicerrectorado de Investigacion de la Universitat Politecnica de Valencia (PAID-11-21). The authors want to acknowledge the institution "Conselleria d'Educacio, Investigaci o, Cultura i Esport de la Generalitat Valenciana" and its grant program "Subvenciones para la contratacion de personal investigador de caracter predoctoral" for doctoral studies (ACIF/2020/246) funded by The European Union. Also, this work is part of grant number INNVA1/2021/38 funded by "Agencia Valenciana de la Innovacion (AVI)" and by "ERDF A way of making Europe".Serrano, J.; Arnau Martínez, FJ.; García-Cuevas González, LM.; Gutierrez, FA. (2022). Thermo-economic analysis of an oxygen production plant powered by an innovative energy recovery system. Energy. 255:1-18. https://doi.org/10.1016/j.energy.2022.12441911825

    Process Engineering and Chemical Plant Design 2011

    Get PDF
    The 18th International Conference in “Process Engineering and Chemical Plant Design” is taking place in Berlin from september 19th to september 23rd 2011. We are pleased with the successful collaboration which is the result of a meanwhile 30 years continual international cooperation between the Cracow University of Technology and the Berlin Institute of Technology. This relationship has also been intensified by student exchange programs and international transfer of knowledge between the participating universities during the last years. This book contains the abstracts of all contributions and lectures which are presented by the miscellaneous participants within the scope of the conference. Different topics are addressed, concerning industrial problems as well as forward-looking questions and fundamental investigation of special phenomena for the chemical and the power generation industry. Thereby special attention is paid to fundamental research of complex correlations, modelling and simulation, process control and operation, sustainable and efficient energy generation as well as troubleshooting and problems within the operation and control of chemical processes. Printed version available by Universitätsverlag der TU Berlin, ISBN 978-3-7983-2361-
    corecore