1,211 research outputs found

    One-class classifiers based on entropic spanning graphs

    Get PDF
    One-class classifiers offer valuable tools to assess the presence of outliers in data. In this paper, we propose a design methodology for one-class classifiers based on entropic spanning graphs. Our approach takes into account the possibility to process also non-numeric data by means of an embedding procedure. The spanning graph is learned on the embedded input data and the outcoming partition of vertices defines the classifier. The final partition is derived by exploiting a criterion based on mutual information minimization. Here, we compute the mutual information by using a convenient formulation provided in terms of the α\alpha-Jensen difference. Once training is completed, in order to associate a confidence level with the classifier decision, a graph-based fuzzy model is constructed. The fuzzification process is based only on topological information of the vertices of the entropic spanning graph. As such, the proposed one-class classifier is suitable also for data characterized by complex geometric structures. We provide experiments on well-known benchmarks containing both feature vectors and labeled graphs. In addition, we apply the method to the protein solubility recognition problem by considering several representations for the input samples. Experimental results demonstrate the effectiveness and versatility of the proposed method with respect to other state-of-the-art approaches.Comment: Extended and revised version of the paper "One-Class Classification Through Mutual Information Minimization" presented at the 2016 IEEE IJCNN, Vancouver, Canad

    Graph similarity through entropic manifold alignment

    Get PDF
    In this paper we decouple the problem of measuring graph similarity into two sequential steps. The first step is the linearization of the quadratic assignment problem (QAP) in a low-dimensional space, given by the embedding trick. The second step is the evaluation of an information-theoretic distributional measure, which relies on deformable manifold alignment. The proposed measure is a normalized conditional entropy, which induces a positive definite kernel when symmetrized. We use bypass entropy estimation methods to compute an approximation of the normalized conditional entropy. Our approach, which is purely topological (i.e., it does not rely on node or edge attributes although it can potentially accommodate them as additional sources of information) is competitive with state-of-the-art graph matching algorithms as sources of correspondence-based graph similarity, but its complexity is linear instead of cubic (although the complexity of the similarity measure is quadratic). We also determine that the best embedding strategy for graph similarity is provided by commute time embedding, and we conjecture that this is related to its inversibility property, since the inverse of the embeddings obtained using our method can be used as a generative sampler of graph structure.The work of the first and third authors was supported by the projects TIN2012-32839 and TIN2015-69077-P of the Spanish Government. The work of the second author was supported by a Royal Society Wolfson Research Merit Award
    corecore