6,814 research outputs found

    Semantics-driven Abstractive Document Summarization

    Get PDF
    The evolution of the Web over the last three decades has led to a deluge of scientific and news articles on the Internet. Harnessing these publications in different fields of study is critical to effective end user information consumption. Similarly, in the domain of healthcare, one of the key challenges with the adoption of Electronic Health Records (EHRs) for clinical practice has been the tremendous amount of clinical notes generated that can be summarized without which clinical decision making and communication will be inefficient and costly. In spite of the rapid advances in information retrieval and deep learning techniques towards abstractive document summarization, the results of these efforts continue to resemble extractive summaries, achieving promising results predominantly on lexical metrics but performing poorly on semantic metrics. Thus, abstractive summarization that is driven by intrinsic and extrinsic semantics of documents is not adequately explored. Resources that can be used for generating semantics-driven abstractive summaries include: • Abstracts of multiple scientific articles published in a given technical field of study to generate an abstractive summary for topically-related abstracts within the field, thus reducing the load of having to read semantically duplicate abstracts on a given topic. • Citation contexts from different authoritative papers citing a reference paper can be used to generate utility-oriented abstractive summary for a scientific article. • Biomedical articles and the named entities characterizing the biomedical articles along with background knowledge bases to generate entity and fact-aware abstractive summaries. • Clinical notes of patients and clinical knowledge bases for abstractive clinical text summarization using knowledge-driven multi-objective optimization. In this dissertation, we develop semantics-driven abstractive models based on intra- document and inter-document semantic analyses along with facts of named entities retrieved from domain-specific knowledge bases to produce summaries. Concretely, we propose a sequence of frameworks leveraging semantics at various granularity (e.g., word, sentence, document, topic, citations, and named entities) levels, by utilizing external resources. The proposed frameworks have been applied to a range of tasks including 1. Abstractive summarization of topic-centric multi-document scientific articles and news articles. 2. Abstractive summarization of scientific articles using crowd-sourced citation contexts. 3. Abstractive summarization of biomedical articles clustered based on entity-relatedness. 4. Abstractive summarization of clinical notes of patients with heart failure and Chest X-Rays recordings. The proposed approaches achieve impressive performance in terms of preserving semantics in abstractive summarization while paraphrasing. For summarization of topic-centric multiple scientific/news articles, we propose a three-stage approach where abstracts of scientific articles or news articles are clustered based on their topical similarity determined from topics generated using Latent Dirichlet Allocation (LDA), followed by extractive phase and abstractive phase. Then, in the next stage, we focus on abstractive summarization of biomedical literature where we leverage named entities in biomedical articles to 1) cluster related articles; and 2) leverage the named entities towards guiding abstractive summarization. Finally, in the last stage, we turn to external resources such as citation contexts pointing to a scientific article to generate a comprehensive and utility-centric abstractive summary of a scientific article, domain-specific knowledge bases to fill gaps in information about entities in a biomedical article to summarize and clinical notes to guide abstractive summarization of clinical text. Thus, the bottom-up progression of exploring semantics towards abstractive summarization in this dissertation starts with (i) Semantic Analysis of Latent Topics; builds on (ii) Internal and External Knowledge-I (gleaned from abstracts and Citation Contexts); and extends it to make it comprehensive using (iii) Internal and External Knowledge-II (Named Entities and Knowledge Bases)

    Building a Generation Knowledge Source using Internet-Accessible Newswire

    Full text link
    In this paper, we describe a method for automatic creation of a knowledge source for text generation using information extraction over the Internet. We present a prototype system called PROFILE which uses a client-server architecture to extract noun-phrase descriptions of entities such as people, places, and organizations. The system serves two purposes: as an information extraction tool, it allows users to search for textual descriptions of entities; as a utility to generate functional descriptions (FD), it is used in a functional-unification based generation system. We present an evaluation of the approach and its applications to natural language generation and summarization.Comment: 8 pages, uses eps

    Improving the Factual Accuracy of Abstractive Clinical Text Summarization using Multi-Objective Optimization

    Get PDF
    While there has been recent progress in abstractive summarization as applied to different domains including news articles, scientific articles, and blog posts, the application of these techniques to clinical text summarization has been limited. This is primarily due to the lack of large-scale training data and the messy/unstructured nature of clinical notes as opposed to other domains where massive training data come in structured or semi-structured form. Further, one of the least explored and critical components of clinical text summarization is factual accuracy of clinical summaries. This is specifically crucial in the healthcare domain, cardiology in particular, where an accurate summary generation that preserves the facts in the source notes is critical to the well-being of a patient. In this study, we propose a framework for improving the factual accuracy of abstractive summarization of clinical text using knowledge-guided multi-objective optimization. We propose to jointly optimize three cost functions in our proposed architecture during training: generative loss, entity loss and knowledge loss and evaluate the proposed architecture on 1) clinical notes of patients with heart failure (HF), which we collect for this study; and 2) two benchmark datasets, Indiana University Chest X-ray collection (IU X-Ray), and MIMIC-CXR, that are publicly available. We experiment with three transformer encoder-decoder architectures and demonstrate that optimizing different loss functions leads to improved performance in terms of entity-level factual accuracy.Comment: Accepted to EMBC 202
    • …
    corecore