4,075 research outputs found

    Event Detection and Tracking Detection of Dangerous Events on Social Media

    Get PDF
    Online social media platforms have become essential tools for communication and information exchange in our lives. It is used for connecting with people and sharing information. This phenomenon has been intensively studied in the past decade to investigate users’ sentiments for different scenarios and purposes. As the technology advanced and popularity increased, it led to the use of different terms referring to similar topics which often result in confusion. We study such trends and intend to propose a uniform solution that deals with the subject clearly. We gather all these ambiguous terms under the umbrella of the most recent and popular terms to reach a concise verdict. Many events have been addressed in recent works that cover only specific types and domains of events. For the sake of keeping things simple and practical, the events that are extreme, negative, and dangerous are grouped under the name Dangerous Events (DE). These dangerous events are further divided into three main categories of action-based, scenario-based, and sentiments-based dangerous events to specify their characteristics. We then propose deep-learning-based models to detect events that are dangerous in nature. The deep-learning models that include BERT, RoBERTa, and XLNet provide valuable results that can effectively help solve the issue of detecting dangerous events using various dimensions. Even though the models perform well, the main constraint of fewer available event datasets and lower quality of certain events data affects the performance of these models can be tackled by handling the issue accordingly.As plataformas online de redes sociais tornaram-se ferramentas essenciais para a comunicação, conexão com outros, e troca de informação nas nossas vidas. Este fenómeno tem sido intensamente estudado na última década para investigar os sentimentos dos utilizadores em diferentes cenários e para vários propósitos. Contudo, a utilização dos meios de comunicação social tornou-se mais complexa e num fenómeno mais vasto devido ao envolvimento de múltiplos intervenientes, tais como empresas, grupos e outras organizações. À medida que a tecnologia avançou e a popularidade aumentou, a utilização de termos diferentes referentes a tópicos semelhantes gerou confusão. Por outras palavras, os modelos são treinados segundo a informação de termos e âmbitos específicos. Portanto, a padronização é imperativa. O objetivo deste trabalho é unir os diferentes termos utilizados em termos mais abrangentes e padronizados. O perigo pode ser uma ameaça como violência social, desastres naturais, danos intelectuais ou comunitários, contágio, agitação social, perda económica, ou apenas a difusão de ideologias odiosas e violentas. Estudamos estes diferentes eventos e classificamos-los em tópicos para que a ténica de deteção baseada em tópicos possa ser concebida e integrada sob o termo Evento Perigosos (DE). Consequentemente, definimos o termo proposto “Eventos Perigosos” (Dangerous Events) e dividimo-lo em três categorias principais de modo a especificar as suas características. Sendo estes denominados Eventos Perigosos, Eventos Perigosos de nível superior, e Eventos Perigosos de nível inferior. O conjunto de dados MAVEN foi utilizado para a obtenção de conjuntos de dados para realizar a experiência. Estes conjuntos de dados são filtrados manualmente com base no tipo de eventos para separar eventos perigosos de eventos gerais. Os modelos de transformação BERT, RoBERTa, e XLNet foram utilizados para classificar dados de texto consoante a respetiva categoria de Eventos Perigosos. Os resultados demonstraram que o desempenho do BERT é superior a outros modelos e pode ser eficazmente utilizado para a tarefa de deteção de Eventos Perigosos. Salienta-se que a abordagem de divisão dos conjuntos de dados aumentou significativamente o desempenho dos modelos. Existem diversos métodos propostos para a deteção de eventos. A deteção destes eventos (ED) são maioritariamente classificados na categoria de supervisonado e não supervisionados, como demonstrado nos metódos supervisionados, estão incluidos support vector machine (SVM), Conditional random field (CRF), Decision tree (DT), Naive Bayes (NB), entre outros. Enquanto a categoria de não supervisionados inclui Query-based, Statisticalbased, Probabilistic-based, Clustering-based e Graph-based. Estas são as duas abordagens em uso na deteção de eventos e são denonimados de document-pivot and feature-pivot. A diferença entre estas abordagens é na sua maioria a clustering approach, a forma como os documentos são utilizados para caracterizar vetores, e a similaridade métrica utilizada para identificar se dois documentos correspondem ao mesmo evento ou não. Além da deteção de eventos, a previsão de eventos é um problema importante mas complicado que engloba diversas dimensões. Muitos destes eventos são difíceis de prever antes de se tornarem visíveis e ocorrerem. Como um exemplo, é impossível antecipar catástrofes naturais, sendo apenas detetáveis após o seu acontecimento. Existe um número limitado de recursos em ternos de conjuntos de dados de eventos. ACE 2005, MAVEN, EVIN são alguns dos exemplos de conjuntos de dados disponíveis para a deteção de evnetos. Os trabalhos recentes demonstraram que os Transformer-based pre-trained models (PTMs) são capazes de alcançar desempenho de última geração em várias tarefas de NLP. Estes modelos são pré-treinados em grandes quantidades de texto. Aprendem incorporações para as palavras da língua ou representações de vetores de modo a que as palavras que se relacionem se agrupen no espaço vectorial. Um total de três transformadores diferentes, nomeadamente BERT, RoBERTa, e XLNet, será utilizado para conduzir a experiência e tirar a conclusão através da comparação destes modelos. Os modelos baseados em transformação (Transformer-based) estão em total sintonia utilizando uma divisão de 70,30 dos conjuntos de dados para fins de formação e teste/validação. A sintonização do hiperparâmetro inclui 10 epochs, 16 batch size, e o optimizador AdamW com taxa de aprendizagem 2e-5 para BERT e RoBERTa e 3e-5 para XLNet. Para eventos perigosos, o BERT fornece 60%, o RoBERTa 59 enquanto a XLNet fornece apenas 54% de precisão geral. Para as outras experiências de configuração de eventos de alto nível, o BERT e a XLNet dão 71% e 70% de desempenho com RoBERTa em relação aos outros modelos com 74% de precisão. Enquanto para o DE baseado em acções, DE baseado em cenários, e DE baseado em sentimentos, o BERT dá 62%, 85%, e 81% respetivamente; RoBERTa com 61%, 83%, e 71%; a XLNet com 52%, 81%, e 77% de precisão. Existe a necessidade de clarificar a ambiguidade entre os diferentes trabalhos que abordam problemas similares utilizando termos diferentes. A ideia proposta de referir acontecimentos especifícos como eventos perigosos torna mais fácil a abordagem do problema em questão. No entanto, a escassez de conjunto de dados de eventos limita o desempenho dos modelos e o progresso na deteção das tarefas. A disponibilidade de uma maior quantidade de informação relacionada com eventos perigosos pode melhorar o desempenho do modelo existente. É evidente que o uso de modelos de aprendizagem profunda, tais como como BERT, RoBERTa, e XLNet, pode ajudar a detetar e classificar eventos perigosos de forma eficiente. Tem sido evidente que a utilização de modelos de aprendizagem profunda, tais como BERT, RoBERTa, e XLNet, pode ajudar a detetar e classificar eventos perigosos de forma eficiente. Em geral, o BERT tem um desempenho superior ao do RoBERTa e XLNet na detecção de eventos perigosos. É igualmente importante rastrear os eventos após a sua detecção. Por conseguinte, para trabalhos futuros, propõe-se a implementação das técnicas que lidam com o espaço e o tempo, a fim de monitorizar a sua emergência com o tempo
    corecore