4,888 research outputs found

    Entity Personalized Talent Search Models with Tree Interaction Features

    Full text link
    Talent Search systems aim to recommend potential candidates who are a good match to the hiring needs of a recruiter expressed in terms of the recruiter's search query or job posting. Past work in this domain has focused on linear and nonlinear models which lack preference personalization in the user-level due to being trained only with globally collected recruiter activity data. In this paper, we propose an entity-personalized Talent Search model which utilizes a combination of generalized linear mixed (GLMix) models and gradient boosted decision tree (GBDT) models, and provides personalized talent recommendations using nonlinear tree interaction features generated by the GBDT. We also present the offline and online system architecture for the productionization of this hybrid model approach in our Talent Search systems. Finally, we provide offline and online experiment results benchmarking our entity-personalized model with tree interaction features, which demonstrate significant improvements in our precision metrics compared to globally trained non-personalized models.Comment: This paper has been accepted for publication at ACM WWW 201

    Salience and Market-aware Skill Extraction for Job Targeting

    Full text link
    At LinkedIn, we want to create economic opportunity for everyone in the global workforce. To make this happen, LinkedIn offers a reactive Job Search system, and a proactive Jobs You May Be Interested In (JYMBII) system to match the best candidates with their dream jobs. One of the most challenging tasks for developing these systems is to properly extract important skill entities from job postings and then target members with matched attributes. In this work, we show that the commonly used text-based \emph{salience and market-agnostic} skill extraction approach is sub-optimal because it only considers skill mention and ignores the salient level of a skill and its market dynamics, i.e., the market supply and demand influence on the importance of skills. To address the above drawbacks, we present \model, our deployed \emph{salience and market-aware} skill extraction system. The proposed \model ~shows promising results in improving the online performance of job recommendation (JYMBII) (+1.92%+1.92\% job apply) and skill suggestions for job posters (−37%-37\% suggestion rejection rate). Lastly, we present case studies to show interesting insights that contrast traditional skill recognition method and the proposed \model~from occupation, industry, country, and individual skill levels. Based on the above promising results, we deployed the \model ~online to extract job targeting skills for all 2020M job postings served at LinkedIn.Comment: 9 pages, to appear in KDD202

    A Comprehensive Survey of Artificial Intelligence Techniques for Talent Analytics

    Full text link
    In today's competitive and fast-evolving business environment, it is a critical time for organizations to rethink how to make talent-related decisions in a quantitative manner. Indeed, the recent development of Big Data and Artificial Intelligence (AI) techniques have revolutionized human resource management. The availability of large-scale talent and management-related data provides unparalleled opportunities for business leaders to comprehend organizational behaviors and gain tangible knowledge from a data science perspective, which in turn delivers intelligence for real-time decision-making and effective talent management at work for their organizations. In the last decade, talent analytics has emerged as a promising field in applied data science for human resource management, garnering significant attention from AI communities and inspiring numerous research efforts. To this end, we present an up-to-date and comprehensive survey on AI technologies used for talent analytics in the field of human resource management. Specifically, we first provide the background knowledge of talent analytics and categorize various pertinent data. Subsequently, we offer a comprehensive taxonomy of relevant research efforts, categorized based on three distinct application-driven scenarios: talent management, organization management, and labor market analysis. In conclusion, we summarize the open challenges and potential prospects for future research directions in the domain of AI-driven talent analytics.Comment: 30 pages, 15 figure

    Matching algorithms : fundamentals, applications and challenges

    Get PDF
    Matching plays a vital role in the rational allocation of resources in many areas, ranging from market operation to people's daily lives. In economics, the term matching theory is coined for pairing two agents in a specific market to reach a stable or optimal state. In computer science, all branches of matching problems have emerged, such as the question-answer matching in information retrieval, user-item matching in a recommender system, and entity-relation matching in the knowledge graph. A preference list is the core element during a matching process, which can either be obtained directly from the agents or generated indirectly by prediction. Based on the preference list access, matching problems are divided into two categories, i.e., explicit matching and implicit matching. In this paper, we first introduce the matching theory's basic models and algorithms in explicit matching. The existing methods for coping with various matching problems in implicit matching are reviewed, such as retrieval matching, user-item matching, entity-relation matching, and image matching. Furthermore, we look into representative applications in these areas, including marriage and labor markets in explicit matching and several similarity-based matching problems in implicit matching. Finally, this survey paper concludes with a discussion of open issues and promising future directions in the field of matching. © 2017 IEEE. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Jing Ren, Xia Feng, Nargiz Sultanova" is provided in this record*

    Multi-Dimensional Recommendation Scheme for Social Networks Considering a User Relationship Strength Perspective

    Get PDF
    Developing a computational method based on user relationship strength for multi-dimensional recommendation is a significant challenge. The traditional recommendation methods have relatively low accuracy because they lack considering information from the perspective of user relationship strength into the recommendation algorithm. User relationship strength reflects the degree of closeness between two users, which can make the recommendation system more efficient between users in pairs. This paper proposes a multi-dimensional comprehensive recommendation method based on user relationship strength. We take three main factors into consideration, including the strength of user relationship, the similarity of entities, and the degree of user interest. First, we introduce a novel method to generate a user candidate set and an entity candidate set by calculating the relationship strength between two users and the similarity between two entities. Then, the algorithm will calculate the user interest degree of each user in the user candidate set to each entity in the entity candidate set, if the user interest degree is larger than or equal to a threshold, this particular entity will be recommended to this user. The performance of the proposed method was verified based on the real-world social network dataset and the e-commerce website dataset, and the experimental result suggests that this method can improve the recommendation accuracy

    High-Order Optimization of Gradient Boosted Decision Trees

    Full text link
    Gradient Boosted Decision Trees (GBDTs) are dominant machine learning algorithms for modeling discrete or tabular data. Unlike neural networks with millions of trainable parameters, GBDTs optimize loss function in an additive manner and have a single trainable parameter per leaf, which makes it easy to apply high-order optimization of the loss function. In this paper, we introduce high-order optimization for GBDTs based on numerical optimization theory which allows us to construct trees based on high-order derivatives of a given loss function. In the experiments, we show that high-order optimization has faster per-iteration convergence that leads to reduced running time. Our solution can be easily parallelized and run on GPUs with little overhead on the code. Finally, we discuss future potential improvements such as automatic differentiation of arbitrary loss function and combination of GBDTs with neural networks.Comment: NeurIPS 2022 Workshop: Order up! The Benefits of Higher-Order Optimization in Machine Learnin

    Spatial Aided Decision-making System for E-Government

    Get PDF
    Non
    • …
    corecore