345 research outputs found

    Smart Surgical Microscope based on Optical Coherence Domain Reflectometry

    Get PDF
    Department of Biomedical EngineeringOver the several decades, there have been clinical needs that requires advanced technologies in medicine. Optical coherence tomography (OCT), one of the newly emerged medical imaging devices, provides non-invasive cross-sectional images in high resolution which is mainly used in ophthalmology. However, due to the limited penetration depth of 1-2 mm in bio-samples, there is a limit to be widely used. In order to easily integrate with existing medical tools and be convenient to users, it is necessary that the sample unit of OCT should be compact and simple. In this study, we developed high-speed swept-source OCT (SS-OCT) for advanced screening of otolaryngology. Synchronized signal sampling with a high-speed digitizer using a clock signal from a swept laser source, its trigger signal is also used to synchronize with the movement of the scanning mirror. The SS-OCT system can reliably provide high-throughput images, and two-axis scanning of galvano mirrors enables real-time acquisition of 3D data. Graphic processing unit (GPU) can performs high-speed data processing through parallel programming, and can also implement perspective projection 3D OCT visualization with optimal ray casting techniques. In the Clinical Study of Otolaryngology, OCT was applied to identify the microscopic extrathyroidal extension (mETE) of papillary thyroid cancer (PTC). As a result to detect the mETE of around 60% in conventional ultrasonography, it could be improved to 84.1% accuracy in our study. The detection ratio of the mETE was calculated by the pathologist analyzing the histologic image. In chapter 3, we present a novel study using combined OCT system integrated with a conventional surgical microscope. In the current set-up of surgical microscope, only two-dimensional microscopic images through the eyepiece view are provided to the surgeon. Thus, image-guided surgery, which provides real-time image information of the tissues or the organs, has been developed as an advanced surgical technique. This study illustrate newly designed optical set-up of smart surgical microscope that combined sample arm of the OCT with an existing microscope. Specifically, we used a beam projector to overlay OCT images on existing eyepiece views, and demonstrated augmented reality images. In chapter 4, in order to develop novel microsurgical instruments, optical coherence domain reflectometry (OCDR) was applied. Introduces smart surgical forceps using OCDR as a sensor that provides high-speed, high-resolution distance information in the tissue. To attach the sensor to the forceps, the lensed fiber which is a small and high sensitivity sensor was fabricated and the results are shown to be less affected by the tilt angle. In addition, the piezo actuator compensates the hand tremor, resulting in a reduction in the human hand tremor of 5 to 15 Hz. Finally, M-mode OCT needle is proposed for microsurgery guidance in ophthalmic surgery. Stepwise transitional core (STC) fiber was applied as a sensor to measure information within the tissue and attached to a 26 gauge needle. It shows the modified OCT system and the position-guided needle design of the sample stage and shows the algorithm flowchart of M-mode OCT imaging software. The developed M-mode OCT needle has been applied to animal studies using rabbit eyes and demonstrates the big-bubble deep anterior lamellar keratoplasty (DALK) surgery for corneal transplantation. Through this study, we propose a novel microsurgical instrument for lamellar keratoplasty and evaluate its feasibility with conventional regular OCT system images. In conclusion, for fundamental study required new augmented reality guided surgery with smart surgical microscope, it is expected that OCT combined with surgical microscope can be widely used. We demonstrated a novel microsurgical instrument to share with light source and the various optical components. Acquired information throughout our integrated system would be a key method to meet a wide range of different clinical needs in the real world.ope

    Three-dimensional image surface acquisition in vertebrate paleontology: A review of principal techniques

    Get PDF
    Three-dimensional (3D) surface scanning includes techniques of image acquisition and image processing. Among the former, hardware devices (e.g., portable and non-portable scanners, camera) capture images from the target, whereas image processing is conducted via specialized software, in which acquired images are processed to merge them into a single 3D surface model. Image surface scanning comprises a wide variety of devices which incorporate different image acquisition techniques, all of them with potential high standards results. We describe four different scanning devices and techniques commonly used in vertebrate paleontology in order to compare them in terms of pros and cons, considering different variables, such as scanning time, post-processing time, costs and image resolution. The decision on which device to choose will depend on the budget available, the portability as well as the nature of the fossil material being analyzed (e.g., size, weight, accessibility). In the light of this, photogrammetry constitutes the image surface technique which fulfills these requirements, having the best cost-benefit relationship

    High-Speed Photoacoustic Microscopy In Vivo

    Get PDF
    The overarching goal of this research is to develop a novel photoacoustic microscopy: PAM) technology capable of high-speed, high-resolution 3D imaging in vivo. PAM combines the advantages of optical absorption contrast and ultrasonic resolution for deep imaging beyond the quasi-ballistic regime. Its high sensitivity to optical absorption enables the imaging of important physiological parameters, such as hemoglobin concentration and oxygen saturation, which closely correlate with angiogenesis and hypermetabolism--two hallmarks of cancer. To translate PAM to the clinic, both high imaging speed and high spatial resolution are desired. With high spatial resolution, PAM can detect small structural and functional changes early; whereas, high-speed image acquisition helps reduce motion artifacts, patient discomfort, cost, and potentially the risks associated with minimally invasive procedures such as endoscopy and intravascular imaging. To achieve high imaging speed, we have constructed a PAM system using a linear ultrasound array and a kHz-repetition-rate tunable laser. The system has achieved a 249-Hz B-scan rate and a 0.5-Hz 3D imaging rate: over ~6 mm × 10 mm × 3 mm), over 200 times faster than existing mechanical scanning PAM using a single ultrasonic transducer. In addition, high-speed optical-resolution photoacoustic microscopy: OR-PAM) technology has been developed, in which the spatial resolution in one or two dimension(s) is defined by the diffraction-limited optical focus. Using section illumination, the elevational resolution of the system has been improved from ~300 micron to ~28 micron, resulting in a significant improvement in the 3D image quality. Furthermore, multiple optical foci with a microlens array have been used to provide finer than 10-micron lateral resolution--enabling the system to image capillary-level microvessels in vivo--while offering a speed potentially 20 times faster than previously existing single-focus OR-PAM. Finally, potential biomedical applications of the developed technology have been demonstrated through in vivo imaging of murine sentinel lymph nodes, microcirculation dynamics, and human pulsatile dynamics. In the future, this high-speed PAM technology may be adapted for clinical imaging of diabetes-induced vascular complications or tumor angiogenesis, or miniaturized for gastrointestinal or intravascular applications

    Validation of the automatic tracking for facial landmarks in 3D motion captured images

    Get PDF
    Aim: The aim of this study was to validate the automatic tracking of facial landmarks in 3D image sequences captured using the Di4D system (Dimensional Imaging Ltd., Glasgow, UK). MATERIALS AND METHODS: 32 subjects (16 males; 16 females) range 18-35 years were recruited. 23 facial landmarks were marked on the face of each subject with a 0.5 mm non-permanent ink. The subjects were asked to perform three facial animations from the rest position (maximal smile, lip purse and cheek puff). Each animation was captured by a 3D stereophotogrammetry video system (Di4D). A single operator digitized landmarks on captured 3D models and the manual digitised landmarks were compared with the automatic tracked landmarks. To investigate the accuracy of manual digitisation, the same operator re-digitized 2 subjects (1 male and 1 female). RESULTS & CONCLUSION: The discrepancies in x, y and z coordinates between the manual digitised landmarks and the automatic tracked facial landmarks were within 0.5 mm and the mean distance between the manual digitisation and the automatic tracking of corresponding landmarks using tracking software was within 0.7 mm which reflects the accuracy of the method( p value was very small). The majority of these distances were within 1 mm. The correlation coefficient between the manual and the automatic tracking of facial landmarks was 0.999 in all x, y, and z coordinates. In conclusion, Automatic tracking of facial landmarks with satisfactory accuracy, would facilitate the analysis of the dynamic motion during facial animations

    3D Capturing Performances of Low-Cost Range Sensors for Mass-Market Applications

    Get PDF
    Since the advent of the first Kinect as motion controller device for the Microsoft XBOX platform (November 2010), several similar active and low-cost range sensing devices have been introduced on the mass-market for several purposes, including gesture based interfaces, 3D multimedia interaction, robot navigation, finger tracking, 3D body scanning for garment design and proximity sensors for automotive. However, given their capability to generate a real time stream of range images, these has been used in some projects also as general purpose range devices, with performances that for some applications might be satisfying. This paper shows the working principle of the various devices, analyzing them in terms of systematic errors and random errors for exploring the applicability of them in standard 3D capturing problems. Five actual devices have been tested featuring three different technologies: i) Kinect V1 by Microsoft, Structure Sensor by Occipital, and Xtion PRO by ASUS, all based on different implementations of the Primesense sensor; ii) F200 by Intel/Creative, implementing the Realsense pattern projection technology; Kinect V2 by Microsoft, equipped with the Canesta TOF Camera. A critical analysis of the results tries first of all to compare them, and secondarily to focus the range of applications for which such devices could actually work as a viable solution

    Low-cost, smartphone-based instant three-dimensional registration system for infant functional near-infrared spectroscopy applications

    Get PDF
    Significance To effectively apply functional near-infrared spectroscopy (fNIRS)/diffuse optical tomography (DOT) devices, a three-dimensional (3D) model of the position of each optode on a subject’s scalp and the positions of that subject’s cranial landmarks are critical. Obtaining this information accurately in infants, who rarely stop moving, is an ongoing challenge. Aim We propose a smartphone-based registration system that can potentially achieve a full-head 3D scan of a 6-month-old infant instantly. Approach The proposed system is remotely controlled by a custom-designed Bluetooth controller. The scanned images can either be manually or automatically aligned to generate a 3D head surface model. Results A full-head 3D scan of a 6-month-old infant can be achieved within 2 s via this system. In testing on a realistic but static infant head model, the average Euclidean error of optode position using this device was 1.8 mm. Conclusions This low-cost 3D registration system therefore has the potential to permit accurate and near-instant fNIRS/DOT spatial registration

    Low-cost, smartphone-based instant three-dimensional registration system for infant functional near-infrared spectroscopy applications

    Get PDF
    Significance: To effectively apply functional near-infrared spectroscopy (fNIRS)/diffuse optical tomography (DOT) devices, a three-dimensional (3D) model of the position of each optode on a subject’s scalp and the positions of that subject’s cranial landmarks are critical. Obtaining this information accurately in infants, who rarely stop moving, is an ongoing challenge. // Aim: We propose a smartphone-based registration system that can potentially achieve a full-head 3D scan of a 6-month-old infant instantly. // Approach: The proposed system is remotely controlled by a custom-designed Bluetooth controller. The scanned images can either be manually or automatically aligned to generate a 3D head surface model. // Results: A full-head 3D scan of a 6-month-old infant can be achieved within 2 s via this system. In testing on a realistic but static infant head model, the average Euclidean error of optode position using this device was 1.8 mm. // Conclusions: This low-cost 3D registration system therefore has the potential to permit accurate and near-instant fNIRS/DOT spatial registration
    corecore