6,986 research outputs found

    Affective Videogames and Modes of Affective Gaming: Assist Me, Challenge Me, Emote Me

    Get PDF
    In this paper we describe the fundamentals of affective gaming from a physiological point of view, covering some of the origins of the genre, how affective videogames operate and current conceptual and technological capabilities. We ground this overview of the ongoing research by taking an in-depth look at one of our own early biofeedback-based affective games. Based on our analysis of existing videogames and our own experience with affective videogames, we propose a new approach to game design based on several high-level design heuristics: assist me, challenge me and emote me (ACE), a series of gameplay "tweaks" made possible through affective videogames

    Affective games:a multimodal classification system

    Get PDF
    Affective gaming is a relatively new field of research that exploits human emotions to influence gameplay for an enhanced player experience. Changes in player’s psychology reflect on their behaviour and physiology, hence recognition of such variation is a core element in affective games. Complementary sources of affect offer more reliable recognition, especially in contexts where one modality is partial or unavailable. As a multimodal recognition system, affect-aware games are subject to the practical difficulties met by traditional trained classifiers. In addition, inherited game-related challenges in terms of data collection and performance arise while attempting to sustain an acceptable level of immersion. Most existing scenarios employ sensors that offer limited freedom of movement resulting in less realistic experiences. Recent advances now offer technology that allows players to communicate more freely and naturally with the game, and furthermore, control it without the use of input devices. However, the affective game industry is still in its infancy and definitely needs to catch up with the current life-like level of adaptation provided by graphics and animation

    How to model and augment player satisfaction : a review

    Get PDF
    This is a review on approaches for modeling satisfaction perceived by users interacting with entertainment systems. Experimental studies with adult and children users of games (screen-based and physical-interactive) are outlined and the most promising approaches for augmenting player satisfaction while the game is played (i.e. in real-time) are discussed.peer-reviewe

    Psychophysiology in games

    Get PDF
    Psychophysiology is the study of the relationship between psychology and its physiological manifestations. That relationship is of particular importance for both game design and ultimately gameplaying. Players’ psychophysiology offers a gateway towards a better understanding of playing behavior and experience. That knowledge can, in turn, be beneficial for the player as it allows designers to make better games for them; either explicitly by altering the game during play or implicitly during the game design process. This chapter argues for the importance of physiology for the investigation of player affect in games, reviews the current state of the art in sensor technology and outlines the key phases for the application of psychophysiology in games.The work is supported, in part, by the EU-funded FP7 ICT iLearnRWproject (project no: 318803).peer-reviewe

    Neuro-electronic technology in medicine and beyond

    Get PDF
    This dissertation looks at the technology and social issues involved with interfacing electronics directly to the human nervous system, in particular the methods for both reading and stimulating nerves. The development and use of cochlea implants is discussed, and is compared with recent developments in artificial vision. The final sections consider a future for non-medicinal applications of neuro-electronic technology. Social attitudes towards use for both medicinal and non-medicinal purposes are discussed, and the viability of use in the latter case assessed

    Game AI revisited

    Get PDF
    More than a decade after the early research efforts on the use of artificial intelligence (AI) in computer games and the establishment of a new AI domain the term “game AI” needs to be redefined. Traditionally, the tasks associated with game AI revolved around non player character (NPC) behavior at different levels of control, varying from navigation and pathfinding to decision making. Commercial-standard games developed over the last 15 years and current game productions, however, suggest that the traditional challenges of game AI have been well addressed via the use of sophisticated AI approaches, not necessarily following or inspired by advances in academic practices. The marginal penetration of traditional academic game AI methods in industrial productions has been mainly due to the lack of constructive communication between academia and industry in the early days of academic game AI, and the inability of academic game AI to propose methods that would significantly advance existing development processes or provide scalable solutions to real world problems. Recently, however, there has been a shift of research focus as the current plethora of AI uses in games is breaking the non-player character AI tradition. A number of those alternative AI uses have already shown a significant potential for the design of better games. This paper presents four key game AI research areas that are currently reshaping the research roadmap in the game AI field and evidently put the game AI term under a new perspective. These game AI flagship research areas include the computational modeling of player experience, the procedural generation of content, the mining of player data on massive-scale and the alternative AI research foci for enhancing NPC capabilities.peer-reviewe

    Experience-driven procedural content generation (extended abstract)

    Get PDF
    Procedural content generation is an increasingly important area of technology within modern human-computer interaction with direct applications in digital games, the semantic web, and interface, media and software design. The personalization of experience via the modeling of the user, coupled with the appropriate adjustment of the content according to user needs and preferences are important steps towards effective and meaningful content generation. This paper introduces a framework for procedural content generation driven by computational models of user experience we name Experience-Driven Procedural Content Generation. While the framework is generic and applicable to various subareas of human computer interaction, we employ games as an indicative example of content-intensive software that enables rich forms of interaction.The research was supported, in part, by the FP7 ICT projects C2Learn (318480) and iLearnRW (318803).peer-reviewe
    • 

    corecore