6,497 research outputs found

    Greening IT : How greener it can form a solid base for a low-carbon society

    Get PDF
    272 p.Libro ElectrónicoInformation Technology is responsible for approximately 2% of the world's emission of greenhouse gases. The IT sector itself contributes to these greenhouse gas emissions, through its massive consumption of energy - and therefore continuously exacerbates the problem. At the same time, however, the IT industry can provide the technological solutions we need to optimise resource use, save energy and reduce greenhouse gas emissions. We call this Greening IT. This book looks into the great potential of greening society with IT - i.e. the potential of IT in transforming our societies into Low-Carbon societies. The book is the result of an internationally collaborative effort by a number of opinion leaders in the field of Greening IT. Tomado de http://www.amazon.com/gp/product/8791936020The Greening of IT is a symptom of a much larger challenge for humankind - transitioning from economic childhood into maturity. Despite the emergence of large regional alliances such as the EC, humankind remains incredibly fragmented; and yet the need for global climate and energy policies is pressing. IT offers tantalizing technical solutions to our emissions and growth dilemma: it can grow greener and help with the greening of other industries. This book explores this potential.AcknowledgementsDisclosure1 Prologue2 Our Tools Will Not Save Us This Time - by Laurent Liscia3 Climate Change and the Low Carbon Society - by Irene N. Sobotta4 Why Green IT Is Hard - An Economic Perspective - by Rien Dijkstra5 Cloud Computing - by Adrian Sobotta6 Thin Client Computing - by Sean Whetstone7 Smart Grid - by Adrian Sobotta8 How IT Contributes to the Greening of the Grid - by Dr. GeorgeW. Arnold9 The Green IT Industry Ecosystem - by Ariane Rüdiger10 Out of The Box Ways IT Can Help to Preserve Nature and Reduce CO2 - by Flavio Souza11 From KPIs to the Business Case - Return on Investment on Green IT? - by Dominique C. Brack12 Computing Energy Efficiency - An Introduction - by Bianca Wirth13 A Future View: Biomimicry + Technology - by Bianca Wirth14 Greening Supply Chains - The Role of Information Technologies - by Hans Moonen15 EpilogueReferencesInde

    Winning the SDG battle in cities : how an integrated information ecosystem can contribute to the achievement of the 2030 sustainable development goals

    Get PDF
    In 2015, the United Nations adopted an ambitious development agenda composed of 17 sustainable development goals (SDGs), which are to be reached by 2030. Beyond SDG 11 concerning the development of sustainable cities, many of the SDGs target activities falling within the responsibility of local governments. Thus, cities will play a leading role in the achievement of these goals, and we argue that the information systems (IS) community must be an active partner in these efforts. This paper aims to contribute to the achievement of the SDGs by developing a conceptual model to explain the role of IS in building smart sustainable cities and providing a framework of action for IS researchers and city managers. To this end, we conduct grounded theory studies of two green IS used by an internationally recognized smart city to manage water quality and green space. Based on these findings, we articulate a model explaining how an integrated information ecosystem enables the interactions between three interrelated spheres – administrative, political and sustainability – to support the development of smart sustainable cities. Moving from theory to practice, we use two real‐world scenarios to demonstrate the applicability of the model. Finally, we define an action framework outlining key actions for cities and suggest corresponding questions for future research. Beyond a simple call‐to‐action, this work provides a much‐needed foundation for future research and practice leading to a sustainable future for all

    An information model for lean, agile, resilient and green supply chain management

    Get PDF
    Dissertação para a obtenção de Grau de Mestre em Engenharia e Gestão IndustrialIn modern business environments, an effective Supply Chain Management (SCM) is crucial to business continuity. In this context, Lean, Agile, Resilient and Green (LARG), are advocated as the fundamental paradigm for a competitive Supply Chain (SC) as a whole. In fact, competition between supply chains (SC) has replaced the traditional competition between companies. To make a supply chain more competitive, capable of responding to the demands of customers with agility, and capable of responding effectively to unexpected disturbance, in conjugation with environmental responsibilities, and the necessity to eliminate processes that add no value, companies must implement a set of LARG SCM practices and Key Performance Indicators (KPI) to measure their influence on the SC performance. However, the selection of the best LARG SCM practices and KPIs is a complex decision-making problem, involving dependencies and feedbacks. Still, any decision-making must be supported by real and transparent data. This dissertation intends to provide two integrated models to assist the information management and decision-making. The first is an information model to support a LARG SCM, allowing the exchange and storage of data/information through a single information platform. In this model three types of diagrams are developed, Business Process Diagram (BPD), Use Cases Diagram and Class Diagram to assist the information platform design. The second is a decision-making model, designated LARG Analytical Network Process (ANP) to select the best LARG SCM practices/KPI to be implemented in SCs. Both models are developed and validated within the automotive SC, namely in Volkswagen Autoeuropa

    Re-use : international working seminar : proceedings, 2nd, March 1-3, 1999

    Get PDF

    Re-use : international working seminar : proceedings, 2nd, March 1-3, 1999

    Get PDF

    Meeting the challenge of zero carbon homes : a multi-disciplinary review of the literature and assessment of key barriers and enablers

    Get PDF
    Within the built environment sector, there is an increasing pressure on professionals to consider the impact of development upon the environment. These pressures are rooted in sustainability, and particularly climate change. But what is meant by sustainability? It is a term whose meaning is often discussed, the most common definition taken from the Bruntland report as “sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs” (World Commission on Environment and Development, 1987). In the built environment, the sustainability issues within the environment, social and economic spheres are often expressed through design considerations of energy, water and waste. Given the Stern Report’s economic and political case for action with respect to climate change (Stern, 2006) and the IPCC’s Fourth Assessment Report’s confirmation of the urgency of the climate change issue and it’s root causes (IPCC, 2007), the need for action to mitigate the effects of climate change is currently high on the political agenda. Excess in carbon dioxide concentrations over the natural level have been attributed to anthropogenic sources, most particularly the burning of carbon-based fossil fuels. Over 40% of Europe’s energy and 40% of Europe’s carbon dioxide emissions arise from use of energy in buildings. Energy use in buildings is primarily for space heating, water heating, lighting and appliance use. Professionals in the built environment can therefore play a significant role in meeting targets for mitigating the effects of climate change. The UK Government recently published the Code for Sustainable Homes (DCLG, 2006). Within this is the objective of development of zero carbon domestic new build dwellings by 2016. It is the domestic zero carbon homes agenda which is the focus of this report. The report is the culmination of a research project, funded by Northumbria University, and conducted from February 2008 to July 2008, involving researchers from the Sustainable Cities Research Institute (within the School of the Built Environment) and academics, also from within the School. The aim of the project was to examine, in a systematic and holistic way, the critical issues, drivers and barriers to building and adapting houses to meet zero carbon targets. The project involved a wide range of subject specialisms within the built environment and took a multi-disciplinary approach. Practitioner contribution was enabled through a workshop. The focus of this work was to review the academic literature on the built environment sector and its capabilities to meet zero carbon housing targets. It was not possible to undertake a detailed review of energy efficiency or micro-generation technologies, the focus of the research was instead in four focussed areas: policy, behaviour, supply chain and technology.What follows is the key findings of the review work undertaken. Chapter One presents the findings of the policy and regulation review. In Chapter Two the review of behavioural aspects of energy use in buildings is presented. Chapter Three presents the findings of the review of supply chain issues. Chapter Four presents the findings of the technology review, which focuses on phase change materials. A summary of the key barriers and enablers, and areas for future research work, concludes this report in Chapter Five. Research is always a work in progress, and therefore comments on this document are most welcome, as are offers of collaboration towards solutions. The School of the Built Environment at Northumbria University strives to embed its research in practical applications and solutions to the need for a low carbon economy

    Technology and skills in the digital industries

    Get PDF

    A simulation model for lean, agile, resilient and green supply chain management: practices and interoperability assessment

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia e Gestão IndustrialIn today’s global market, the environment of unpredictable events has imposed a competitiveness improvement that requires a greater coordination and collaboration among Supply Chain (SC) entities, i.e., an effective Supply Chain Management (SCM). In this context, Lean, Agile, Resilient and Green (LARG) strategies emerged as a response. However, interoperability issues are always presents in operations among SC entities. From the Information Technology (IT) perspective, among all the multi-decisional techniques supporting a logistics network, simulation appears as an essential tool that allow the quantitative evaluation of benefits and issues deriving from a co-operative environment. The present work provides a SC simulation model for analysing the effect of the interoperability degree of LARG practices in the SC performance, through Key Performance Indicators (KPI’s) such as cost, lead time and service level. The creation of two scenarios with a different point of view about the LARG practices allowed to analyse which one contributes to the best SC performance. Since some of the inputs were assumed, it was made a sensitivity analysis to validate the output of the simulation model. Based on the creation of six types of math expressions, it was possible to establish the connection between the effect of the interoperability degree of LARG practices and the SC performance. This analysis was applied on a case study that was conducted at some entities of a Portuguese automotive SC. The software used to develop the simulation model is Arena, which is considered a user-friendly and dynamic tool. It was concluded that SCM, interoperability and simulation subjects must be applied together to help organisations to achieve overall competitiveness, focusing their strategies on a co-operative environment
    corecore