4,329 research outputs found

    Quantum Proofs

    Get PDF
    Quantum information and computation provide a fascinating twist on the notion of proofs in computational complexity theory. For instance, one may consider a quantum computational analogue of the complexity class \class{NP}, known as QMA, in which a quantum state plays the role of a proof (also called a certificate or witness), and is checked by a polynomial-time quantum computation. For some problems, the fact that a quantum proof state could be a superposition over exponentially many classical states appears to offer computational advantages over classical proof strings. In the interactive proof system setting, one may consider a verifier and one or more provers that exchange and process quantum information rather than classical information during an interaction for a given input string, giving rise to quantum complexity classes such as QIP, QSZK, and QMIP* that represent natural quantum analogues of IP, SZK, and MIP. While quantum interactive proof systems inherit some properties from their classical counterparts, they also possess distinct and uniquely quantum features that lead to an interesting landscape of complexity classes based on variants of this model. In this survey we provide an overview of many of the known results concerning quantum proofs, computational models based on this concept, and properties of the complexity classes they define. In particular, we discuss non-interactive proofs and the complexity class QMA, single-prover quantum interactive proof systems and the complexity class QIP, statistical zero-knowledge quantum interactive proof systems and the complexity class \class{QSZK}, and multiprover interactive proof systems and the complexity classes QMIP, QMIP*, and MIP*.Comment: Survey published by NOW publisher

    Entanglement-Resistant Two-Prover Interactive Proof Systems and Non-Adaptive Private Information Retrieval Systems

    Full text link
    We show that, for any language in NP, there is an entanglement-resistant constant-bit two-prover interactive proof system with a constant completeness vs. soundness gap. The previously proposed classical two-prover constant-bit interactive proof systems are known not to be entanglement-resistant. This is currently the strongest expressive power of any known constant-bit answer multi-prover interactive proof system that achieves a constant gap. Our result is based on an "oracularizing" property of certain private information retrieval systems, which may be of independent interest.Comment: 8 page
    corecore