285 research outputs found

    Robust interface between flying and topological qubits

    Get PDF
    Hybrid architectures, consisting of conventional and topological qubits, have recently attracted much attention due to their capability in consolidating the robustness of topological qubits and the universality of conventional qubits. However, these two kinds of qubits are normally constructed in significantly different energy scales, and thus this energy mismatch is a major obstacle for their coupling that supports the exchange of quantum information between them. Here, we propose a microwave photonic quantum bus for a direct strong coupling between the topological and conventional qubits, in which the energy mismatch is compensated by the external driving field via the fractional ac Josephson effect. In the framework of tight-binding simulation and perturbation theory, we show that the energy splitting of the topological qubits in a finite length nanowire is still robust against local perturbations, which is ensured not only by topology, but also by the particle-hole symmetry. Therefore, the present scheme realizes a robust interface between the flying and topological qubits. Finally, we demonstrate that this quantum bus can also be used to generate multipartitie entangled states with the topological qubits.Comment: Accepted for publication in Scientific Report

    Mesoscopic Physics of Quantum Systems and Neural Networks

    Get PDF
    We study three different kinds of mesoscopic systems – in the intermediate region between macroscopic and microscopic scales consisting of many interacting constituents: We consider particle entanglement in one-dimensional chains of interacting fermions. By employing a field theoretical bosonization calculation, we obtain the one-particle entanglement entropy in the ground state and its time evolution after an interaction quantum quench which causes relaxation towards non-equilibrium steady states. By pushing the boundaries of the numerical exact diagonalization and density matrix renormalization group computations, we are able to accurately scale to the thermodynamic limit where we make contact to the analytic field theory model. This allows to fix an interaction cutoff required in the continuum bosonization calculation to account for the short range interaction of the lattice model, such that the bosonization result provides accurate predictions for the one-body reduced density matrix in the Luttinger liquid phase. Establishing a better understanding of how to control entanglement in mesoscopic systems is also crucial for building qubits for a quantum computer. We further study a popular scalable qubit architecture that is based on Majorana zero modes in topological superconductors. The two major challenges with realizing Majorana qubits currently lie in trivial pseudo-Majorana states that mimic signatures of the topological bound states and in strong disorder in the proposed topological hybrid systems that destroys the topological phase. We study coherent transport through interferometers with a Majorana wire embedded into one arm. By combining analytical and numerical considerations, we explain the occurrence of an amplitude maximum as a function of the Zeeman field at the onset of the topological phase – a signature unique to MZMs – which has recently been measured experimentally [Whiticar et al., Nature Communications, 11(1):3212, 2020]. By placing an array of gates in proximity to the nanowire, we made a fruitful connection to the field of Machine Learning by using the CMA-ES algorithm to tune the gate voltages in order to maximize the amplitude of coherent transmission. We find that the algorithm is capable of learning disorder profiles and even to restore Majorana modes that were fully destroyed by strong disorder by optimizing a feasible number of gates. Deep neural networks are another popular machine learning approach which not only has many direct applications to physical systems but which also behaves similarly to physical mesoscopic systems. In order to comprehend the effects of the complex dynamics from the training, we employ Random Matrix Theory (RMT) as a zero-information hypothesis: before training, the weights are randomly initialized and therefore are perfectly described by RMT. After training, we attribute deviations from these predictions to learned information in the weight matrices. Conducting a careful numerical analysis, we verify that the spectra of weight matrices consists of a random bulk and a few important large singular values and corresponding vectors that carry almost all learned information. By further adding label noise to the training data, we find that more singular values in intermediate parts of the spectrum contribute by fitting the randomly labeled images. Based on these observations, we propose a noise filtering algorithm that both removes the singular values storing the noise and reverts the level repulsion of the large singular values due to the random bulk

    Quantum Control in Open and Periodically Driven Systems

    Full text link
    Quantum technology resorts to efficient utilization of quantum resources to realize technique innovation. The systems are controlled such that their states follow the desired manners to realize different quantum protocols. However, the decoherence caused by the system-environment interactions causes the states deviating from the desired manners. How to protect quantum resources under the coexistence of active control and passive decoherence is of significance. Recent studies have revealed that the decoherence is determined by the feature of the system-environment energy spectrum: Accompanying the formation of bound states in the energy spectrum, the decoherence can be suppressed. It supplies a guideline to control decoherence. Such idea can be generalized to systems under periodic driving. By virtue of manipulating Floquet bound states in the quasienergy spectrum, coherent control via periodic driving dubbed as Floquet engineering has become a versatile tool not only in controlling decoherence, but also in artificially synthesizing exotic topological phases. We will review the progress on quantum control in open and periodically driven systems. Special attention will be paid to the distinguished role played by the bound states and their controllability via periodic driving in suppressing decoherence and generating novel topological phases.Comment: A review articl

    Large-Scale Topological Quantum Computing with and without Majorana Fermions

    Get PDF
    Quantum computers are devices that can solve certain problems faster than ordinary, classical computers. The fundamental units of quantum information are qubits, superpositions of two states, a "zero" state and a "one" state. There are various approaches to construct such two-level systems, among others, using superconducting circuits, trapped ions or photons. A common feature of these physical systems is that their coherence times are relatively short compared to the length of useful computations. Superconducting qubits, for instance, are currently the most advanced solid-state qubits, but they decohere after around 100 microseconds, and any information stored in these qubits is lost. On the other hand, useful quantum computations may require quantum information to survive on time scales that are many orders of magnitude longer, as their runtimes can reach several hours or even days. Topological quantum computing is an approach to construct qubits that survive for the entire duration of such a long computation. Topological quantum computing comes in two flavors. The condensed matter approach is to build error-resilient qubits using exotic quasiparticles in topological materials, most prominently Majorana zero modes in topological superconductors. Even though no such qubit has been built to date, the hope is that their coherence times may be significantly longer than the coherence times of currently available solid-state qubits, but are still expected to be too short for large-scale quantum computing. The quantum information approach is to combine many error-prone qubits to build more robust logical qubits using topological error-correcting codes, e.g., surface codes. Even though the first approach is hardware-based and the second approach is software-based, they are deeply related. With Majorana-based qubits, the main logical operations are Majorana fermion parity measurements. By replacing Majorana-based qubits with surface-code patches and parity measurements with lattice-surgery operations, schemes for quantum computation with Majorana-based qubits or with surface codes can be identical. In this thesis, we explore how to construct a large-scale topological fault-tolerant quantum computer that can perform useful quantum computations. Here, topological refers to the nature of the quantum error-correcting code, while the underlying hardware may be based on non-topological qubits, but could also be composed of Majorana-based qubits. We provide a complete picture of such a large-scale device, breaking down large quantum computations into logical qubits and logical operations, describing how these logical operations are performed on the level of physical qubits and physical gates, and finally discussing how these physical qubits can be pieced together in a Majorana-based system using topological superconducting nanowires

    Approaches to Building a Quantum Computer Based on Semiconductors

    Get PDF
    Throughout this Ph.D., the quest to build a quantum computer has accelerated, driven by ever-improving fidelities of conventional qubits and the development of new technologies that promise topologically protected qubits with the potential for lifetimes that exceed those of comparable conventional qubits. As such, there has been an explosion of interest in the design of an architecture for a quantum computer. This design would have to include high-quality qubits at the bottom of the stack, be extensible, and allow the layout of many qubits with scalable methods for readout and control of the entire device. Furthermore, the whole experimental infrastructure must handle the requirements for parallel operation of many qubits in the system. Hence the crux of this thesis: to design an architecture for a semiconductor-based quantum computer that encompasses all the elements that would be required to build a large scale quantum machine, and investigate the individual these elements at each layer of this stack, from qubit to readout to control
    • …
    corecore