59 research outputs found

    Efficient Concentration Protocols for the Single-Photon Entanglement State with Polarization Feature

    Get PDF
    We propose two efficient entanglement concentration protocols (ECPs) for arbitrary less-entangled single-photon entanglement state, in which the photon qubit has the polarization feature. The first ECP is in linear optics, and the second ECP is in nonlinear optics. The two ECPs have some attractive advantages. First, they can preserve the polarization feature of the photon qubit, while all the other existing ECPs for single photon state cannot achieve this goal. Second, they only require one pair of less-entangled single-photon entanglement state and some auxiliary single photons. Third, they only require local operations. Especially, the second ECP can be used repeatedly, which can increase its success probability largely. Based on above properties, our two ECPs, especially the second one may be useful in current and future quantum communication

    Multi-photon entanglement and interferometry

    Full text link
    Multi-photon interference reveals strictly non-classical phenomena. Its applications range from fundamental tests of quantum mechanics to photonic quantum information processing, where a significant fraction of key experiments achieved so far comes from multi-photon state manipulation. We review the progress, both theoretical and experimental, of this rapidly advancing research. The emphasis is given to the creation of photonic entanglement of various forms, tests of the completeness of quantum mechanics (in particular, violations of local realism), quantum information protocols for quantum communication (e.g., quantum teleportation, entanglement purification and quantum repeater), and quantum computation with linear optics. We shall limit the scope of our review to "few photon" phenomena involving measurements of discrete observables.Comment: 71 pages, 38 figures; updated version accepted by Rev. Mod. Phy

    Light, the universe and everything – 12 Herculean tasks for quantum cowboys and black diamond skiers

    Get PDF
    The Winter Colloquium on the Physics of Quantum Electronics (PQE) has been a seminal force in quantum optics and related areas since 1971. It is rather mind-boggling to recognize how the concepts presented at these conferences have transformed scientific understanding and human society. In January 2017, the participants of PQE were asked to consider the equally important prospects for the future, and to formulate a set of questions representing some of the greatest aspirations in this broad field. The result is this multi-authored paper, in which many of the world’s leading experts address the following fundamental questions: (1) What is the future of gravitational wave astronomy? (2) Are there new quantum phases of matter away from equilibrium that can be found and exploited – such as the time crystal? (3) Quantum theory in uncharted territory: What can we learn? (4) What are the ultimate limits for laser photon energies? (5) What are the ultimate limits to temporal, spatial and optical resolution? (6) What novel roles will atoms play in technology? (7) What applications lie ahead for nitrogen-vacancy centres in diamond? (8) What is the future of quantum coherence, squeezing and entanglement for enhanced super-resolution and sensing? (9) How can we solve (some of) humanity’s biggest problems through new quantum technologies? (10) What new understanding of materials and biological molecules will result from their dynamical characterization with free-electron lasers? (11) What new technologies and fundamental discoveries might quantum optics achieve by the end of this century? (12) What novel topological structures can be created and employed in quantum optics

    Efficient Quantum State Analysis and Entanglement Detection

    Get PDF

    Journeys from quantum optics to quantum technology

    Get PDF
    Sir Peter Knight is a pioneer in quantum optics which has now grown to an important branch of modern physics to study the foundations and applications of quantum physics. He is leading an effort to develop new technologies from quantum mechanics. In this collection of essays, we recall the time we were working with him as a postdoc or a PhD student and look at how the time with him has influenced our research
    • …
    corecore