2,613 research outputs found

    Decoherence vs entanglement in coined quantum walks

    Get PDF
    Quantum versions of random walks on the line and cycle show a quadratic improvement in their spreading rate and mixing times respectively. The addition of decoherence to the quantum walk produces a more uniform distribution on the line, and even faster mixing on the cycle by removing the need for time-averaging to obtain a uniform distribution. We calculate numerically the entanglement between the coin and the position of the quantum walker and show that the optimal decoherence rates are such that all the entanglement is just removed by the time the final measurement is made.Comment: 11 pages, 6 embedded eps figures; v2 improved layout and discussio

    Optimal computation with non-unitary quantum walks

    Get PDF
    Quantum versions of random walks on the line and the cycle show a quadratic improvement over classical random walks in their spreading rates and mixing times, respectively. Non-unitary quantum walks can provide a useful optimisation of these properties, producing a more uniform distribution on the line, and faster mixing times on the cycle. We investigate the interplay between quantum and random dynamics by comparing the resources required, and examining numerically how the level of quantum correlations varies during the walk. We show numerically that the optimal non-unitary quantum walk proceeds such that the quantum correlations are nearly all removed at the point of the final measurement. This requires only O(logT) random bits for a quantum walk of T steps
    • …
    corecore