953 research outputs found

    Entanglement witnesses for a class of bipartite states of n x n qubits

    Full text link
    We characterize the positive maps detecting the entangled bipartite states of n x n qubits that are diagonal with respect to the orthonormal basis constructed by tensor products of Pauli matrices acting on the totally symmetric state. We then discuss the case n=2 for a class of states completely determined by the geometric patterns of subsets of a 16 point lattice.Comment: 25 page

    Time-evolution of tripartite quantum discord and entanglement under local and non-local random telegraph noise

    Full text link
    Few studies explored the dynamics of non-classical correlations besides entanglement in open multipartite quantum systems. Here, we address the time-evolution of quantum discord and entanglement in a model of three non-interacting qubits subject to a classical random telegraph noise in common and separated environments. Two initial entangled states of the system are examined, namely the GHZ- and W-type states. The dynamics of quantum correlations results to be strongly affected by the input configuration of the qubits, the type of the system-environment interaction, and the memory properties of the environmental noise. When the qubits are non-locally coupled to the random telegraph noise, the GHZ-type states partially preserve, at long times, both discord and entanglement, regardless the correlation time of the environmental noise. The survived entangled states turn out to be also detectable by means of suitable entanglement witnesses. On the other hand, in the same conditions, the decohering effects suppress all the quantum correlation of the W-type states which are thus less robust than the GHZ-type ones. The long-time survival of tripartite discord and entanglement opens interesting perspectives in the use of multipartite entangled states for practical applications in quantum information science.Comment: 11 pages, 4 figure

    Quantum entanglement

    Get PDF
    All our former experience with application of quantum theory seems to say: {\it what is predicted by quantum formalism must occur in laboratory}. But the essence of quantum formalism - entanglement, recognized by Einstein, Podolsky, Rosen and Schr\"odinger - waited over 70 years to enter to laboratories as a new resource as real as energy. This holistic property of compound quantum systems, which involves nonclassical correlations between subsystems, is a potential for many quantum processes, including ``canonical'' ones: quantum cryptography, quantum teleportation and dense coding. However, it appeared that this new resource is very complex and difficult to detect. Being usually fragile to environment, it is robust against conceptual and mathematical tools, the task of which is to decipher its rich structure. This article reviews basic aspects of entanglement including its characterization, detection, distillation and quantifying. In particular, the authors discuss various manifestations of entanglement via Bell inequalities, entropic inequalities, entanglement witnesses, quantum cryptography and point out some interrelations. They also discuss a basic role of entanglement in quantum communication within distant labs paradigm and stress some peculiarities such as irreversibility of entanglement manipulations including its extremal form - bound entanglement phenomenon. A basic role of entanglement witnesses in detection of entanglement is emphasized.Comment: 110 pages, 3 figures, ReVTex4, Improved (slightly extended) presentation, updated references, minor changes, submitted to Rev. Mod. Phys

    Spin squeezing inequalities and entanglement of NN qubit states

    Full text link
    We derive spin squeezing inequalities that generalize the concept of the spin squeezing parameter and provide necessary and sufficient conditions for genuine 2-, or 3- qubit entanglement for symmetric states, and sufficient condition for general states of NN qubits. Our inequalities have a clear physical interpretation as entanglement witnesses, can be relatively easy measured, and are given by complex, but {\it elementary} expressions.Comment: formula (24) corrected, minor changes, final versio

    Arboreal Bound Entanglement

    Full text link
    In this paper, we discuss the entanglement properties of graph-diagonal states, with particular emphasis on calculating the threshold for the transition between the presence and absence of entanglement (i.e. the separability point). Special consideration is made of the thermal states of trees, including the linear cluster state. We characterise the type of entanglement present, and describe the optimal entanglement witnesses and their implementation on a quantum computer, up to an additive approximation. In the case of general graphs, we invoke a relation with the partition function of the classical Ising model, thereby intimating a connection to computational complexity theoretic tasks. Finally, we show that the entanglement is robust to some classes of local perturbations.Comment: 9 pages + appendices, 3 figure

    Entanglement Witnesses for Graph States: General Theory and Examples

    Full text link
    We present a general theory for the construction of witnesses that detect genuine multipartite entanglement in graph states. First, we present explicit witnesses for all graph states of up to six qubits which are better than all criteria so far. Therefore, lower fidelities are required in experiments that aim at the preparation of graph states. Building on these results, we develop analytical methods to construct two different types of entanglement witnesses for general graph states. For many classes of states, these operators exhibit white noise tolerances that converge to one when increasing the number of particles. We illustrate our approach for states such as the linear and the 2D cluster state. Finally, we study an entanglement monotone motivated by our approach for graph states.Comment: 12 pages + appendix, 7 figure

    Classification of mixed three-qubit states

    Get PDF
    We introduce a classification of mixed three-qubit states, in which we define the classes of separable, biseparable, W- and GHZ-states. These classes are successively embedded into each other. We show that contrary to pure W-type states, the mixed W-class is not of measure zero. We construct witness operators that detect the class of a mixed state. We discuss the conjecture that all entangled states with positive partial transpose (PPTES) belong to the W-class. Finally, we present a new family of PPTES "edge" states with maximal ranks.Comment: 4 pages, 1 figur

    Entanglement Detection in the Stabilizer Formalism

    Full text link
    We investigate how stabilizer theory can be used for constructing sufficient conditions for entanglement. First, we show how entanglement witnesses can be derived for a given state, provided some stabilizing operators of the state are known. These witnesses require only a small effort for an experimental implementation and are robust against noise. Second, we demonstrate that also nonlinear criteria based on uncertainty relations can be derived from stabilizing operators. These criteria can sometimes improve the witnesses by adding nonlinear correction terms. All our criteria detect states close to Greenberger-Horne-Zeilinger states, cluster and graph states. We show that similar ideas can be used to derive entanglement conditions for states which do not fit the stabilizer formalism, such as the three-qubit W state. We also discuss connections between the witnesses and some Bell inequalities.Comment: 15 pages including 2 figures, revtex4; typos corrected, presentation improved; to appear in PR
    corecore