71,645 research outputs found

    Long-Range Communications in Unlicensed Bands: the Rising Stars in the IoT and Smart City Scenarios

    Full text link
    Connectivity is probably the most basic building block of the Internet of Things (IoT) paradigm. Up to know, the two main approaches to provide data access to the \emph{things} have been based either on multi-hop mesh networks using short-range communication technologies in the unlicensed spectrum, or on long-range, legacy cellular technologies, mainly 2G/GSM, operating in the corresponding licensed frequency bands. Recently, these reference models have been challenged by a new type of wireless connectivity, characterized by low-rate, long-range transmission technologies in the unlicensed sub-GHz frequency bands, used to realize access networks with star topology which are referred to a \emph{Low-Power Wide Area Networks} (LPWANs). In this paper, we introduce this new approach to provide connectivity in the IoT scenario, discussing its advantages over the established paradigms in terms of efficiency, effectiveness, and architectural design, in particular for the typical Smart Cities applications

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Computing the kk-coverage of a wireless network

    Full text link
    Coverage is one of the main quality of service of a wirelessnetwork. kk-coverage, that is to be covered simultaneously by kknetwork nodes, is synonym of reliability and numerous applicationssuch as multiple site MIMO features, or handovers. We introduce here anew algorithm for computing the kk-coverage of a wirelessnetwork. Our method is based on the observation that kk-coverage canbe interpreted as kk layers of 11-coverage, or simply coverage. Weuse simplicial homology to compute the network's topology and areduction algorithm to indentify the layers of 11-coverage. Weprovide figures and simulation results to illustrate our algorithm.Comment: Valuetools 2019, Mar 2019, Palma de Mallorca, Spain. 2019. arXiv admin note: text overlap with arXiv:1802.0844

    2D Time-frequency interference modelling using stochastic geometry for performance evaluation in Low-Power Wide-Area Networks

    Full text link
    In wireless networks, interferences between trans- missions are modelled either in time or frequency domain. In this article, we jointly analyze interferences in the time- frequency domain using a stochastic geometry model assuming the total time-frequency resources to be a two-dimensional plane and transmissions from Internet of Things (IoT) devices time- frequency patterns on this plane. To evaluate the interference, we quantify the overlap between the information packets: provided that the overlap is not too strong, the packets are not necessarily lost due to capture effect. This flexible model can be used for multiple medium access scenarios and is especially adapted to the random time-frequency access schemes used in Low-Power Wide-Area Networks (LPWANs). By characterizing the outage probability and throughput, our approach permits to evaluate the performance of two representative LPWA technologies Sigfox{\textsuperscript \textregistered} and LoRaWA{\textsuperscript \textregistered}
    • …
    corecore