4,418 research outputs found

    High order direct Arbitrary-Lagrangian-Eulerian schemes on moving Voronoi meshes with topology changes

    Full text link
    We present a new family of very high order accurate direct Arbitrary-Lagrangian-Eulerian (ALE) Finite Volume (FV) and Discontinuous Galerkin (DG) schemes for the solution of nonlinear hyperbolic PDE systems on moving 2D Voronoi meshes that are regenerated at each time step and which explicitly allow topology changes in time. The Voronoi tessellations are obtained from a set of generator points that move with the local fluid velocity. We employ an AREPO-type approach, which rapidly rebuilds a new high quality mesh rearranging the element shapes and neighbors in order to guarantee a robust mesh evolution even for vortex flows and very long simulation times. The old and new Voronoi elements associated to the same generator are connected to construct closed space--time control volumes, whose bottom and top faces may be polygons with a different number of sides. We also incorporate degenerate space--time sliver elements, needed to fill the space--time holes that arise because of topology changes. The final ALE FV-DG scheme is obtained by a redesign of the fully discrete direct ALE schemes of Boscheri and Dumbser, extended here to moving Voronoi meshes and space--time sliver elements. Our new numerical scheme is based on the integration over arbitrary shaped closed space--time control volumes combined with a fully-discrete space--time conservation formulation of the governing PDE system. In this way the discrete solution is conservative and satisfies the GCL by construction. Numerical convergence studies as well as a large set of benchmarks for hydrodynamics and magnetohydrodynamics (MHD) demonstrate the accuracy and robustness of the proposed method. Our numerical results clearly show that the new combination of very high order schemes with regenerated meshes with topology changes lead to substantial improvements compared to direct ALE methods on conforming meshes

    FullSWOF_Paral: Comparison of two parallelization strategies (MPI and SKELGIS) on a software designed for hydrology applications

    Get PDF
    In this paper, we perform a comparison of two approaches for the parallelization of an existing, free software, FullSWOF 2D (http://www. univ-orleans.fr/mapmo/soft/FullSWOF/ that solves shallow water equations for applications in hydrology) based on a domain decomposition strategy. The first approach is based on the classical MPI library while the second approach uses Parallel Algorithmic Skeletons and more precisely a library named SkelGIS (Skeletons for Geographical Information Systems). The first results presented in this article show that the two approaches are similar in terms of performance and scalability. The two implementation strategies are however very different and we discuss the advantages of each one.Comment: 27 page

    Parallel Anisotropic Unstructured Grid Adaptation

    Get PDF
    Computational Fluid Dynamics (CFD) has become critical to the design and analysis of aerospace vehicles. Parallel grid adaptation that resolves multiple scales with anisotropy is identified as one of the challenges in the CFD Vision 2030 Study to increase the capacity and capability of CFD simulation. The Study also cautions that computer architectures are undergoing a radical change and dramatic increases in algorithm concurrency will be required to exploit full performance. This paper reviews four different methods to parallel anisotropic grid generation. They cover both ends of the spectrum: (i) using existing state-of-the-art software optimized for a single core and modifying it for parallel platforms and (ii) designing and implementing scalable software with incomplete, but rapidly maturating functionality. A brief overview for each grid adaptation system is presented in the context of a telescopic approach for multilevel concurrency. These methods employ different approaches to enable parallel execution, which provides a unique opportunity to illustrate the relative behavior of each approach. Qualitative and quantitative metric evaluations are used to draw lessons for future developments in this critical area for parallel CFD simulation

    Direct immersogeometric fluid flow analysis using B-rep CAD models

    Get PDF
    We present a new method for immersogeometric fluid flow analysis that directly uses the CAD boundary representation (B-rep) of a complex object and immerses it into a locally refined, non-boundary-fitted discretization of the fluid domain. The motivating applications include analyzing the flow over complex geometries, such as moving vehicles, where the detailed geometric features usually require time-consuming, labor-intensive geometry cleanup or mesh manipulation for generating the surrounding boundary-fitted fluid mesh. The proposed method avoids the challenges associated with such procedures. A new method to perform point membership classification of the background mesh quadrature points is also proposed. To faithfully capture the geometry in intersected elements, we implement an adaptive quadrature rule based on the recursive splitting of elements. Dirichlet boundary conditions in intersected elements are enforced weakly in the sense of Nitsche\u27s method. To assess the accuracy of the proposed method, we perform computations of the benchmark problem of flow over a sphere represented using B-rep. Quantities of interest such as drag coefficient are in good agreement with reference values reported in the literature. The results show that the density and distribution of the surface quadrature points are crucial for the weak enforcement of Dirichlet boundary conditions and for obtaining accurate flow solutions. Also, with sufficient levels of surface quadrature element refinement, the quadrature error near the trim curves becomes insignificant. Finally, we demonstrate the effectiveness of our immersogeometric method for high-fidelity industrial scale simulations by performing an aerodynamic analysis of an agricultural tractor directly represented using B-rep

    Efficient Output-Based Adaptation Mechanics for High-Order Computational Fluid Dynamics Methods

    Full text link
    As numerical simulations are applied to more complex and large-scale problems, solution verification becomes increasingly important in ensuring accuracy of the computed results. In addition, although improvements in computer hardware have brought expensive simulations within reach, efficiency is still paramount, especially in the context of design optimization and uncertainty quantification. This thesis addresses both of these needs through contributions to solution-based adaptive algorithms, in which the discretization is modified through a feedback of solution error estimates so as to improve the accuracy. In particular, new methods are developed for two discretizations relevant to Computational Fluid Dynamics: the Active Flux method and the discontinuous Galerkin method. For the Active Flux method, which is fully-discrete third-order discretization, both the discrete and continuous adjoint methods are derived and used to drive mesh (h) refinement and dynamic node movement, also known as rr adaptation. For the discontinuous Galerkin method, which is an arbitrary-order finite-element discretization, efficiency improvements are presented for computing and using error estimates derived from the discrete adjoint, and a new rr-adaptation strategy is presented for unsteady problems. For both discretizations, error estimate efficacy and adaptive efficiency improvements are shown relative to other strategies.PHDAerospace EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/144065/1/dkaihua_1.pd

    Doctor of Philosophy

    Get PDF
    dissertationOne of the fundamental building blocks of many computational sciences is the construction and use of a discretized, geometric representation of a problem domain, often referred to as a mesh. Such a discretization enables an otherwise complex domain to be represented simply, and computation to be performed over that domain with a finite number of basis elements. As mesh generation techniques have become more sophisticated over the years, focus has largely shifted to quality mesh generation techniques that guarantee or empirically generate numerically well-behaved elements. In this dissertation, the two complementary meshing subproblems of vertex placement and element creation are analyzed, both separately and together. First, a dynamic particle system achieves adaptivity over domains by inferring feature size through a new information passing algorithm. Second, a new tetrahedral algorithm is constructed that carefully combines lattice-based stenciling and mesh warping to produce guaranteed quality meshes on multimaterial volumetric domains. Finally, the ideas of lattice cleaving and dynamic particle systems are merged into a unified framework for producing guaranteed quality, unstructured and adaptive meshing of multimaterial volumetric domains

    A physics-informed GAN Framework based on Model-free Data-Driven Computational Mechanics

    Full text link
    Model-free data-driven computational mechanics, first proposed by Kirchdoerfer and Ortiz, replace phenomenological models with numerical simulations based on sample data sets in strain-stress space. In this study, we integrate this paradigm within physics-informed generative adversarial networks (GANs). We enhance the conventional physics-informed neural network framework by implementing the principles of data-driven computational mechanics into GANs. Specifically, the generator is informed by physical constraints, while the discriminator utilizes the closest strain-stress data to discern the authenticity of the generator's output. This combined approach presents a new formalism to harness data-driven mechanics and deep learning to simulate and predict mechanical behaviors
    • …
    corecore