1,412 research outputs found

    Parameter Privacy versus Control Performance: Fisher Information Regularized Control

    Get PDF
    This article introduces and solves a new privacy-related optimization problem for cyber-physical systems where an adversary tries to learn the system dynamics. In the context of linear quadratic systems, we consider the problem of achieving a small cost while balancing the need for keeping knowledge about the model's parameters private. To this end, we formulate a Fisher information regularized version of the linear quadratic regulator with cheap cost. Here the control operator is allowed to not only control the plant but also mask its state by injecting further noise. Within the class of linear policies with additive noise, we solve this problem and show that the optimal noise distribution is Gaussian with state dependent covariance. Next, we prove that the optimal linear feedback law is the same as without regularization. Finally, to motivate our proposed scheme, we formulate an equivalent minimax problem for the worst-case scenario in which the adversary has full knowledge of all other inputs and outputs. Here, our policies are minimax optimal with respect to maximizing the variance over all unbiased estimators

    Information-Theoretic Privacy through Chaos Synchronization and Optimal Additive Noise

    Get PDF
    We study the problem of maximizing privacy of data sets by adding random vectors generated via synchronized chaotic oscillators. In particular, we consider the setup where information about data sets, queries, is sent through public (unsecured) communication channels to a remote station. To hide private features (specific entries) within the data set, we corrupt the response to queries by adding random vectors. We send the distorted query (the sum of the requested query and the random vector) through the public channel. The distribution of the additive random vector is designed to minimize the mutual information (our privacy metric) between private entries of the data set and the distorted query. We cast the synthesis of this distribution as a convex program in the probabilities of the additive random vector. Once we have the optimal distribution, we propose an algorithm to generate pseudo-random realizations from this distribution using trajectories of a chaotic oscillator. At the other end of the channel, we have a second chaotic oscillator, which we use to generate realizations from the same distribution. Note that if we obtain the same realizations on both sides of the channel, we can simply subtract the realization from the distorted query to recover the requested query. To generate equal realizations, we need the two chaotic oscillators to be synchronized, i.e., we need them to generate exactly the same trajectories on both sides of the channel synchronously in time. We force the two chaotic oscillators into exponential synchronization using a driving signal. Simulations are presented to illustrate our results.Comment: arXiv admin note: text overlap with arXiv:1809.03133 by other author

    Robust Networks: Neural Networks Robust to Quantization Noise and Analog Computation Noise Based on Natural Gradient

    Get PDF
    abstract: Deep neural networks (DNNs) have had tremendous success in a variety of statistical learning applications due to their vast expressive power. Most applications run DNNs on the cloud on parallelized architectures. There is a need for for efficient DNN inference on edge with low precision hardware and analog accelerators. To make trained models more robust for this setting, quantization and analog compute noise are modeled as weight space perturbations to DNNs and an information theoretic regularization scheme is used to penalize the KL-divergence between perturbed and unperturbed models. This regularizer has similarities to both natural gradient descent and knowledge distillation, but has the advantage of explicitly promoting the network to and a broader minimum that is robust to weight space perturbations. In addition to the proposed regularization, KL-divergence is directly minimized using knowledge distillation. Initial validation on FashionMNIST and CIFAR10 shows that the information theoretic regularizer and knowledge distillation outperform existing quantization schemes based on the straight through estimator or L2 constrained quantization.Dissertation/ThesisMasters Thesis Computer Engineering 201

    Privacy Against Adversarial Classification in Cyber-Physical Systems

    Get PDF
    For a class of Cyber-Physical Systems (CPSs), we address the problem of performing computations over the cloud without revealing private information about the structure and operation of the system. We model CPSs as a collection of input-output dynamical systems (the system operation modes). Depending on the mode the system is operating on, the output trajectory is generated by one of these systems in response to driving inputs. Output measurements and driving inputs are sent to the cloud for processing purposes. We capture this "processing" through some function (of the input-output trajectory) that we require the cloud to compute accurately - referred here as the trajectory utility. However, for privacy reasons, we would like to keep the mode private, i.e., we do not want the cloud to correctly identify what mode of the CPS produced a given trajectory. To this end, we distort trajectories before transmission and send the corrupted data to the cloud. We provide mathematical tools (based on output-regulation techniques) to properly design distorting mechanisms so that: 1) the original and distorted trajectories lead to the same utility; and the distorted data leads the cloud to misclassify the mode
    • …
    corecore