472 research outputs found

    Ensuring Average Recovery with Adversarial Scheduler

    Get PDF
    In this paper, we focus on revising a given program so that the average recovery time in the presence of an adversarial scheduler is bounded by a given threshold lambda. Specifically, we consider the scenario where the fault (or other unexpected action) perturbs the program to a state that is outside its set of legitimate states. Starting from this state, the program executes its actions/transitions to recover to legitimate states. However, the adversarial scheduler can force the program to reach one illegitimate state that requires a longer recovery time. To ensure that the average recovery time is less than lambda, we need to remove certain transitions/behaviors. We show that achieving this average response time while removing minimum transitions is NP-hard. In other words, there is a tradeoff between the time taken to synthesize the program and the transitions preserved to reduce the average convergence time. We present six different heuristics and evaluate this tradeoff with case studies. Finally, we note that the average convergence time considered here requires formalization of hyperproperties. Hence, this work also demonstrates feasibility of adding (certain) hyperproperties to an existing program

    The Parallel Persistent Memory Model

    Full text link
    We consider a parallel computational model that consists of PP processors, each with a fast local ephemeral memory of limited size, and sharing a large persistent memory. The model allows for each processor to fault with bounded probability, and possibly restart. On faulting all processor state and local ephemeral memory are lost, but the persistent memory remains. This model is motivated by upcoming non-volatile memories that are as fast as existing random access memory, are accessible at the granularity of cache lines, and have the capability of surviving power outages. It is further motivated by the observation that in large parallel systems, failure of processors and their caches is not unusual. Within the model we develop a framework for developing locality efficient parallel algorithms that are resilient to failures. There are several challenges, including the need to recover from failures, the desire to do this in an asynchronous setting (i.e., not blocking other processors when one fails), and the need for synchronization primitives that are robust to failures. We describe approaches to solve these challenges based on breaking computations into what we call capsules, which have certain properties, and developing a work-stealing scheduler that functions properly within the context of failures. The scheduler guarantees a time bound of O(W/PA+D(P/PA)log1/fW)O(W/P_A + D(P/P_A) \lceil\log_{1/f} W\rceil) in expectation, where WW and DD are the work and depth of the computation (in the absence of failures), PAP_A is the average number of processors available during the computation, and f1/2f \le 1/2 is the probability that a capsule fails. Within the model and using the proposed methods, we develop efficient algorithms for parallel sorting and other primitives.Comment: This paper is the full version of a paper at SPAA 2018 with the same nam

    SAGE: Sequential Attribute Generator for Analyzing Glioblastomas using Limited Dataset

    Full text link
    While deep learning approaches have shown remarkable performance in many imaging tasks, most of these methods rely on availability of large quantities of data. Medical image data, however, is scarce and fragmented. Generative Adversarial Networks (GANs) have recently been very effective in handling such datasets by generating more data. If the datasets are very small, however, GANs cannot learn the data distribution properly, resulting in less diverse or low-quality results. One such limited dataset is that for the concurrent gain of 19 and 20 chromosomes (19/20 co-gain), a mutation with positive prognostic value in Glioblastomas (GBM). In this paper, we detect imaging biomarkers for the mutation to streamline the extensive and invasive prognosis pipeline. Since this mutation is relatively rare, i.e. small dataset, we propose a novel generative framework - the Sequential Attribute GEnerator (SAGE), that generates detailed tumor imaging features while learning from a limited dataset. Experiments show that not only does SAGE generate high quality tumors when compared to standard Deep Convolutional GAN (DC-GAN) and Wasserstein GAN with Gradient Penalty (WGAN-GP), it also captures the imaging biomarkers accurately

    The Trickle-down Impact of Reward (In-)consistency on RLHF

    Full text link
    Standard practice within Reinforcement Learning from Human Feedback (RLHF) involves optimizing against a Reward Model (RM), which itself is trained to reflect human preferences for desirable generations. A notable subject that is understudied is the (in-)consistency of RMs -- whether they can recognize the semantic changes to different prompts and appropriately adapt their reward assignments -- and their impact on the downstream RLHF model. In this paper, we visit a series of research questions relevant to RM inconsistency: (1) How can we measure the consistency of reward models? (2) How consistent are the existing RMs and how can we improve them? (3) In what ways does reward inconsistency influence the chatbots resulting from the RLHF model training? We propose Contrast Instructions -- a benchmarking strategy for the consistency of RM. Each example in Contrast Instructions features a pair of lexically similar instructions with different ground truth responses. A consistent RM is expected to rank the corresponding instruction and response higher than other combinations. We observe that current RMs trained with the standard ranking objective fail miserably on Contrast Instructions compared to average humans. To show that RM consistency can be improved efficiently without using extra training budget, we propose two techniques ConvexDA and RewardFusion, which enhance reward consistency through extrapolation during the RM training and inference stage, respectively. We show that RLHF models trained with a more consistent RM yield more useful responses, suggesting that reward inconsistency exhibits a trickle-down effect on the downstream RLHF process

    A physics-informed GAN Framework based on Model-free Data-Driven Computational Mechanics

    Full text link
    Model-free data-driven computational mechanics, first proposed by Kirchdoerfer and Ortiz, replace phenomenological models with numerical simulations based on sample data sets in strain-stress space. In this study, we integrate this paradigm within physics-informed generative adversarial networks (GANs). We enhance the conventional physics-informed neural network framework by implementing the principles of data-driven computational mechanics into GANs. Specifically, the generator is informed by physical constraints, while the discriminator utilizes the closest strain-stress data to discern the authenticity of the generator's output. This combined approach presents a new formalism to harness data-driven mechanics and deep learning to simulate and predict mechanical behaviors
    corecore