232 research outputs found

    Hoeffding Tree Algorithms for Anomaly Detection in Streaming Datasets: A Survey

    Get PDF
    This survey aims to deliver an extensive and well-constructed overview of using machine learning for the problem of detecting anomalies in streaming datasets. The objective is to provide the effectiveness of using Hoeffding Trees as a machine learning algorithm solution for the problem of detecting anomalies in streaming cyber datasets. In this survey we categorize the existing research works of Hoeffding Trees which can be feasible for this type of study into the following: surveying distributed Hoeffding Trees, surveying ensembles of Hoeffding Trees and surveying existing techniques using Hoeffding Trees for anomaly detection. These categories are referred to as compositions within this paper and were selected based on their relation to streaming data and the flexibility of their techniques for use within different domains of streaming data. We discuss the relevance of how combining the techniques of the proposed research works within these compositions can be used to address the anomaly detection problem in streaming cyber datasets. The goal is to show how a combination of techniques from different compositions can solve a prominent problem, anomaly detection

    Online estimation of discrete densities using classifier chains

    Get PDF
    We propose an approach to estimate a discrete joint density online, that is, the algorithm is only provided the current example, its current estimate, and a limited amount of memory. To design an online estimator for discrete densities, we use classifier chains to model dependencies among features. Each classifier in the chain estimates the probability of one particular feature. Because a single chain may not provide a reliable estimate, we also consider ensembles of classifier chains. Our experiments on synthetic data show that the approach is feasible and the estimated densities approach the true, known distribution with increasing amounts of data

    Reservoir of Diverse Adaptive Learners and Stacking Fast Hoeffding Drift Detection Methods for Evolving Data Streams

    Full text link
    The last decade has seen a surge of interest in adaptive learning algorithms for data stream classification, with applications ranging from predicting ozone level peaks, learning stock market indicators, to detecting computer security violations. In addition, a number of methods have been developed to detect concept drifts in these streams. Consider a scenario where we have a number of classifiers with diverse learning styles and different drift detectors. Intuitively, the current 'best' (classifier, detector) pair is application dependent and may change as a result of the stream evolution. Our research builds on this observation. We introduce the \mbox{Tornado} framework that implements a reservoir of diverse classifiers, together with a variety of drift detection algorithms. In our framework, all (classifier, detector) pairs proceed, in parallel, to construct models against the evolving data streams. At any point in time, we select the pair which currently yields the best performance. We further incorporate two novel stacking-based drift detection methods, namely the \mbox{FHDDMS} and \mbox{FHDDMS}_{add} approaches. The experimental evaluation confirms that the current 'best' (classifier, detector) pair is not only heavily dependent on the characteristics of the stream, but also that this selection evolves as the stream flows. Further, our \mbox{FHDDMS} variants detect concept drifts accurately in a timely fashion while outperforming the state-of-the-art.Comment: 42 pages, and 14 figure

    Performance Analysis of Hoeffding Trees in Data Streams by Using Massive Online Analysis Framewor

    Get PDF
    Present work is mainly concerned with the understanding of the problem of classification from the data stream perspective on evolving streams using massive online analysis framework with regard to different Hoeffding trees. Advancement of the technology both in the area of hardware and software has led to the rapid storage of data in huge volumes. Such data is referred to as a data stream. Traditional data mining methods are not capable of handling data streams because of the ubiquitous nature of data streams. The challenging task is how to store, analyse and visualise such large volumes of data. Massive data mining is a solution for these challenges. In the present analysis five different Hoeffding trees are used on the available eight dataset generators of massive online analysis framework and the results predict that stagger generator happens to be the best performer for different classifiers

    Accuracy Extended Ensemble - A Brood Purposive Stream Data mining

    Get PDF
    The objective of Data mining is to haul out knowledge from gigantic quantity of data. The storage, querying and mining of such data sets are highly computationally challenging tasks. Mining data streams is concerned with extracting knowledge structures represented in models and patterns in non stopping streams of information. The research in data stream mining has gained a high attraction due to the importance of its applications and the increasing generation of streaming information. Decision trees have been widely used for online learning classification.In this article the problem of data-stream classification has been considered by introducing an online and incremental stream-classification ensemble algorithm given name Accuracy Extended Ensemble which an extension to the Accuracy Weighted Ensemble.Proposed algorithm will be adept to deal with data streams having an evolving nature and an ergodic arrival rate of training/test data records

    Improving decision tree and neural network learning for evolving data-streams

    Get PDF
    High-throughput real-time Big Data stream processing requires fast incremental algorithms that keep models consistent with most recent data. In this scenario, Hoeffding Trees are considered the state-of-the-art single classifier for processing data streams and they are widely used in ensemble combinations. This thesis is devoted to the improvement of the performance of algorithms for machine learning/artificial intelligence on evolving data streams. In particular, we focus on improving the Hoeffding Tree classifier and its ensemble combinations, in order to reduce its resource consumption and its response time latency, achieving better throughput when processing evolving data streams. First, this thesis presents a study on using Neural Networks (NN) as an alternative method for processing data streams. The use of random features for improving NNs training speed is proposed and important issues are highlighted about the use of NN on a data stream setup. These issues motivated this thesis to go in the direction of improving the current state-of-the-art methods: Hoeffding Trees and their ensemble combinations. Second, this thesis proposes the Echo State Hoeffding Tree (ESHT), as an extension of the Hoeffding Tree to model time-dependencies typically present in data streams. The capabilities of the new proposed architecture on both regression and classification problems are evaluated. Third, a new methodology to improve the Adaptive Random Forest (ARF) is developed. ARF has been introduced recently, and it is considered the state-of-the-art classifier in the MOA framework (a popular framework for processing evolving data streams). This thesis proposes the Elastic Swap Random Forest, an extension to ARF that reduces the number of base learners in the ensemble down to one third on average, while providing similar accuracy than the standard ARF with 100 trees. And finally, a last contribution on a multi-threaded high performance scalable ensemble design that is highly adaptable to a variety of hardware platforms, ranging from server-class to edge computing. The proposed design achieves throughput improvements of 85x (Intel i7), 143x (Intel Xeon parsing from memory), 10x (Jetson TX1, ARM) and 23x (X-Gene2, ARM) compared to single-threaded MOA on i7. In addition, the proposal achieves 75% parallel efficiency when using 24 cores on the Intel Xeon.Procesar grandes flujos de datos (Big Data Streams, BDS) en tiempo real requiere el uso de algoritmos incrementales rápidos que mantengan los modelos consistentes con los datos más recientes. En este escenario, los Hoeffding Trees (HT) se consideran el clasificador simple más avanzado para procesar BDS, razon por la cual son ampliamente usados como base a la hora de combinar clasificadores en Ensembles. Esta tesis está dedicada a la mejora del rendimiento de algoritmos para Machine Learning/Iteligencia Artificial en BDS que evolucionan con el tiempo (es decir, BDS cuya distribución estadística cambia con el tiempo). En particular, nuestro objetivo es mejorar el Hoeffding Tree y sus combinaciones en Ensembles, con el objetivo de reducir el consumo de recursos y la latencia en el tiempo de respuesta, logrando un mejor rendimiento al procesar BDS que evolucionan en el tiempo. Primero, se presenta un estudio sobre el uso de redes neuronales (NN) con parámetros aleatorios como un método alternativo para procesar BDS con el objetivo de mejorar la velocidad de entrenamiento de Nns. También se destacan problemas importantes derivados del uso de NN para BDS. Como consecuencia, esta tesis tomo la dirección de mejorar los métodos de vanguardia en BDS: Hoeffding Trees y sus combinaciones en Ensembles. Segundo, se propone el Echo State Hoeffding Tree (ESHT), como una extensión del HT para modelar las dependencias temporales típicamente presentes en BDS. La nueva arquitectura propuesta se evalúa tanto en problemas de regresión como de clasificación. Tercero, se propone una extensión para el Adaptive Random Forest (ARF), publicado recientemente y considerado como el clasificador mas potente implementado en MOA (un framework muy popular para procesar BDS). Proponemos el Elastic Swap Random Forest para reducir el número de clasificadores en el ensemble a un tercio en promedio, al tiempo se mantiene un accuracy similar a la de un ARF estándar con 100 árboles. Finalmente, la última contribución de esta tesis es una arquitectura de Ensembles multi hilo para procesar BDS. Nuestro diseño es altamente adaptable a una variedad de plataformas de hardware, que van desde servidores hasta pequeños dispositivos en el Edge Computing (pej, Internet de las Cosas). El diseño propuesto logra mejoras de rendimiento de 85x (Intel i7), 143x (análisis de Intel Xeon desde la memoria), 10x (Jetson TX1, ARM) y 23x (X-Gene2, ARM) en comparación con MOA (un solo proceso) en un Intel i7. Además, la propuesta logra una eficiencia paralela del 75 \% cuando se usan 24 núcleos en el Intel Xeon.Postprint (published version

    Improving Hoeffding Trees

    Get PDF
    Modern information technology allows information to be collected at a far greater rate than ever before. So fast, in fact, that the main problem is making sense of it all. Machine learning offers promise of a solution, but the field mainly focusses on achieving high accuracy when data supply is limited. While this has created sophisticated classification algorithms, many do not cope with increasing data set sizes. When the data set sizes get to a point where they could be considered to represent a continuous supply, or data stream, then incremental classification algorithms are required. In this setting, the effectiveness of an algorithm cannot simply be assessed by accuracy alone. Consideration needs to be given to the memory available to the algorithm and the speed at which data is processed in terms of both the time taken to predict the class of a new data sample and the time taken to include this sample in an incrementally updated classification model. The Hoeffding tree algorithm is a state-of-the-art method for inducing decision trees from data streams. The aim of this thesis is to improve this algorithm. To measure improvement, a comprehensive framework for evaluating the performance of data stream algorithms is developed. Within the framework memory size is fixed in order to simulate realistic application scenarios. In order to simulate continuous operation, classes of synthetic data are generated providing an evaluation on a large scale. Improvements to many aspects of the Hoeffding tree algorithm are demonstrated. First, a number of methods for handling continuous numeric features are compared. Second, tree prediction strategy is investigated to evaluate the utility of various methods. Finally, the possibility of improving accuracy using ensemble methods is explored. The experimental results provide meaningful comparisons of accuracy and processing speeds between different modifications of the Hoeffding tree algorithm under various memory limits. The study on numeric attributes demonstrates that sacrificing accuracy for space at the local level often results in improved global accuracy. The prediction strategy shown to perform best adaptively chooses between standard majority class and Naive Bayes prediction in the leaves. The ensemble method investigation shows that combining trees can be worthwhile, but only when sufficient memory is available, and improvement is less likely than in traditional machine learning. In particular, issues are encountered when applying the popular boosting method to streams
    corecore