18,317 research outputs found

    Applying Rule Ensembles to the Search for Super-Symmetry at the Large Hadron Collider

    Get PDF
    In this note we give an example application of a recently presented predictive learning method called Rule Ensembles. The application we present is the search for super-symmetric particles at the Large Hadron Collider. In particular, we consider the problem of separating the background coming from top quark production from the signal of super-symmetric particles. The method is based on an expansion of base learners, each learner being a rule, i.e. a combination of cuts in the variable space describing signal and background. These rules are generated from an ensemble of decision trees. One of the results of the method is a set of rules (cuts) ordered according to their importance, which gives useful tools for diagnosis of the model. We also compare the method to a number of other multivariate methods, in particular Artificial Neural Networks, the likelihood method and the recently presented boosted decision tree method. We find better performance of Rule Ensembles in all cases. For example for a given significance the amount of data needed to claim SUSY discovery could be reduced by 15 % using Rule Ensembles as compared to using a likelihood method.Comment: 24 pages, 7 figures, replaced to match version accepted for publication in JHE

    Identifying Real Estate Opportunities using Machine Learning

    Full text link
    The real estate market is exposed to many fluctuations in prices because of existing correlations with many variables, some of which cannot be controlled or might even be unknown. Housing prices can increase rapidly (or in some cases, also drop very fast), yet the numerous listings available online where houses are sold or rented are not likely to be updated that often. In some cases, individuals interested in selling a house (or apartment) might include it in some online listing, and forget about updating the price. In other cases, some individuals might be interested in deliberately setting a price below the market price in order to sell the home faster, for various reasons. In this paper, we aim at developing a machine learning application that identifies opportunities in the real estate market in real time, i.e., houses that are listed with a price substantially below the market price. This program can be useful for investors interested in the housing market. We have focused in a use case considering real estate assets located in the Salamanca district in Madrid (Spain) and listed in the most relevant Spanish online site for home sales and rentals. The application is formally implemented as a regression problem that tries to estimate the market price of a house given features retrieved from public online listings. For building this application, we have performed a feature engineering stage in order to discover relevant features that allows for attaining a high predictive performance. Several machine learning algorithms have been tested, including regression trees, k-nearest neighbors, support vector machines and neural networks, identifying advantages and handicaps of each of them.Comment: 24 pages, 13 figures, 5 table
    • …
    corecore