26,162 research outputs found

    Applying Rule Ensembles to the Search for Super-Symmetry at the Large Hadron Collider

    Get PDF
    In this note we give an example application of a recently presented predictive learning method called Rule Ensembles. The application we present is the search for super-symmetric particles at the Large Hadron Collider. In particular, we consider the problem of separating the background coming from top quark production from the signal of super-symmetric particles. The method is based on an expansion of base learners, each learner being a rule, i.e. a combination of cuts in the variable space describing signal and background. These rules are generated from an ensemble of decision trees. One of the results of the method is a set of rules (cuts) ordered according to their importance, which gives useful tools for diagnosis of the model. We also compare the method to a number of other multivariate methods, in particular Artificial Neural Networks, the likelihood method and the recently presented boosted decision tree method. We find better performance of Rule Ensembles in all cases. For example for a given significance the amount of data needed to claim SUSY discovery could be reduced by 15 % using Rule Ensembles as compared to using a likelihood method.Comment: 24 pages, 7 figures, replaced to match version accepted for publication in JHE

    Popular Ensemble Methods: An Empirical Study

    Full text link
    An ensemble consists of a set of individually trained classifiers (such as neural networks or decision trees) whose predictions are combined when classifying novel instances. Previous research has shown that an ensemble is often more accurate than any of the single classifiers in the ensemble. Bagging (Breiman, 1996c) and Boosting (Freund and Shapire, 1996; Shapire, 1990) are two relatively new but popular methods for producing ensembles. In this paper we evaluate these methods on 23 data sets using both neural networks and decision trees as our classification algorithm. Our results clearly indicate a number of conclusions. First, while Bagging is almost always more accurate than a single classifier, it is sometimes much less accurate than Boosting. On the other hand, Boosting can create ensembles that are less accurate than a single classifier -- especially when using neural networks. Analysis indicates that the performance of the Boosting methods is dependent on the characteristics of the data set being examined. In fact, further results show that Boosting ensembles may overfit noisy data sets, thus decreasing its performance. Finally, consistent with previous studies, our work suggests that most of the gain in an ensemble's performance comes in the first few classifiers combined; however, relatively large gains can be seen up to 25 classifiers when Boosting decision trees

    Formal Verification of Input-Output Mappings of Tree Ensembles

    Full text link
    Recent advances in machine learning and artificial intelligence are now being considered in safety-critical autonomous systems where software defects may cause severe harm to humans and the environment. Design organizations in these domains are currently unable to provide convincing arguments that their systems are safe to operate when machine learning algorithms are used to implement their software. In this paper, we present an efficient method to extract equivalence classes from decision trees and tree ensembles, and to formally verify that their input-output mappings comply with requirements. The idea is that, given that safety requirements can be traced to desirable properties on system input-output patterns, we can use positive verification outcomes in safety arguments. This paper presents the implementation of the method in the tool VoTE (Verifier of Tree Ensembles), and evaluates its scalability on two case studies presented in current literature. We demonstrate that our method is practical for tree ensembles trained on low-dimensional data with up to 25 decision trees and tree depths of up to 20. Our work also studies the limitations of the method with high-dimensional data and preliminarily investigates the trade-off between large number of trees and time taken for verification
    corecore