2,377 research outputs found

    Business Inferences and Risk Modeling with Machine Learning; The Case of Aviation Incidents

    Get PDF
    Machine learning becomes truly valuable only when decision-makers begin to depend on it to optimize decisions. Instilling trust in machine learning is critical for businesses in their efforts to interpret and get insights into data, and to make their analytical choices accessible and subject to accountability. In the field of aviation, the innovative application of machine learning and analytics can facilitate an understanding of the risk of accidents and other incidents. These occur infrequently, generally in an irregular, unpredictable manner, and cause significant disruptions, and hence, they are classified as "high-impact, low-probability" (HILP) events. Aviation incident reports are inspected by experts, but it is also important to have a comprehensive overview of incidents and their holistic effects. This study provides an interpretable machine-learning framework for predicting aircraft damage. In addition, it describes patterns of flight specifications detected through the use of a simulation tool and illuminates the underlying reasons for specific aviation accidents. As a result, we can predict the aircraft damage with 85% accuracy and 84% in-class accuracy. Most important, we simulate a combination of possible flight-type, aircraft-type, and pilot-expertise combinations to arrive at insights, and we recommend actions that can be taken by aviation stakeholders, such as airport managers, airlines, flight training companies, and aviation policy makers. In short, we combine predictive results with simulations to interpret findings and prescribe actions

    Business Inferences and Risk Modeling with Machine Learning; The Case of Aviation Incidents

    Get PDF
    Machine learning becomes truly valuable only when decision-makers begin to depend on it to optimize decisions. Instilling trust in machine learning is critical for businesses in their efforts to interpret and get insights into data, and to make their analytical choices accessible and subject to accountability. In the field of aviation, the innovative application of machine learning and analytics can facilitate an understanding of the risk of accidents and other incidents. These occur infrequently, generally in an irregular, unpredictable manner, and cause significant disruptions, and hence, they are classified as high-impact, low-probability (HILP) events. Aviation incident reports are inspected by experts, but it is also important to have a comprehensive overview of incidents and their holistic effects. This study provides an interpretable machine-learning framework for predicting aircraft damage. In addition, it describes patterns of flight specifications detected through the use of a simulation tool and illuminates the underlying reasons for specific aviation accidents. As a result, we can predict the aircraft damage with 85% accuracy and 84% in-class accuracy. Most important, we simulate a combination of possible flight-type, aircraft-type, and pilot-expertise combinations to arrive at insights, and we recommend actions that can be taken by aviation stakeholders, such as airport managers, airlines, flight training companies, and aviation policy makers. In short, we combine predictive results with simulations to interpret findings and prescribe actions

    Automatic Machine Learning for Insurance: H2O Experiment

    Full text link
    Treballs Finals del Màster de Ciències Actuarials i Financeres, Facultat d'Economia i Empresa, Universitat de Barcelona, Curs: 2020-2021, Tutor: Dr. Salvador Torra PorrasThis thesis provides an introduction of machine learning (ML), shows the implication that ML has on the insurance sector and takes a special consideration to the H2O ensemble modelling approach for the insurance claim fraud detection binary classification. The aim of this thesis is to study the H2O Automatic ML potential and compare the results generated with traditional algorithms such as lineal perceptron, Logistic Regression, multilayer perceptron, support vector machine and decision tree. Using H2O web interface or R programming, not only the most efficient ML algorithms are obtained with no effort but also provide better modelling metrics than traditional methods

    Predicting Pilot Misperception of Runway Excursion Risk Through Machine Learning Algorithms of Recorded Flight Data

    Get PDF
    The research used predictive models to determine pilot misperception of runway excursion risk associated with unstable approaches. The Federal Aviation Administration defined runway excursion as a veer-off or overrun of the runway surface. The Federal Aviation Administration also defined a stable approach as an aircraft meeting the following criteria: (a) on target approach airspeed, (b) correct attitude, (c) landing configuration, (d) nominal descent angle/rate, and (e) on a straight flight path to the runway touchdown zone. Continuing an unstable approach to landing was defined as Unstable Approach Risk Misperception in this research. A review of the literature revealed that an unstable approach followed by the failure to execute a rejected landing was a common contributing factor in runway excursions. Flight Data Recorder data were archived and made available by the National Aeronautics and Space Administration for public use. These data were collected over a four-year period from the flight data recorders of a fleet of 35 regional jets operating in the National Airspace System. The archived data were processed and explored for evidence of unstable approaches and to determine whether or not a rejected landing was executed. Once identified, those data revealing evidence of unstable approaches were processed for the purposes of building predictive models. SAS™ Enterprise MinerR was used to explore the data, as well as to build and assess predictive models. The advanced machine learning algorithms utilized included: (a) support vector machine, (b) random forest, (c) gradient boosting, (d) decision tree, (e) logistic regression, and (f) neural network. The models were evaluated and compared to determine the best prediction model. Based on the model comparison, the decision tree model was determined to have the highest predictive value. The Flight Data Recorder data were then analyzed to determine predictive accuracy of the target variable and to determine important predictors of the target variable, Unstable Approach Risk Misperception. Results of the study indicated that the predictive accuracy of the best performing model, decision tree, was 99%. Findings indicated that six variables stood out in the prediction of Unstable Approach Risk Misperception: (1) glideslope deviation, (2) selected approach speed deviation (3) localizer deviation, (4) flaps not extended, (5) drift angle, and (6) approach speed deviation. These variables were listed in order of importance based on results of the decision tree predictive model analysis. The results of the study are of interest to aviation researchers as well as airline pilot training managers. It is suggested that the ability to predict the probability of pilot misperception of runway excursion risk could influence the development of new pilot simulator training scenarios and strategies. The research aids avionics providers in the development of predictive runway excursion alerting display technologies

    Engage D2.6 Annual combined thematic workshops progress report (series 2)

    Get PDF
    The preparation, organisation and conclusions from the thematic challenge workshops, two ad hoc technical workshops, a technical session on data and a MET/ENV workshop held in 2019 and 2020 are described. Partly due to Covid-19, two of the 2020 thematic challenge workshops scheduled to take place at the end of 2020 were re-scheduled to January 2021. We also report on the preparation for these two workshops, while the conclusions will be included in the next corresponding deliverable

    A Machine Learning Approach to Safer Airplane Landings: Predicting Runway Conditions using Weather and Flight Data

    Full text link
    The presence of snow and ice on runway surfaces reduces the available tire-pavement friction needed for retardation and directional control and causes potential economic and safety threats for the aviation industry during the winter seasons. To activate appropriate safety procedures, pilots need accurate and timely information on the actual runway surface conditions. In this study, XGBoost is used to create a combined runway assessment system, which includes a classifcation model to predict slippery conditions and a regression model to predict the level of slipperiness. The models are trained on weather data and data from runway reports. The runway surface conditions are represented by the tire-pavement friction coefficient, which is estimated from flight sensor data from landing aircrafts. To evaluate the performance of the models, they are compared to several state-of-the-art runway assessment methods. The XGBoost models identify slippery runway conditions with a ROC AUC of 0.95, predict the friction coefficient with a MAE of 0.0254, and outperforms all the previous methods. The results show the strong abilities of machine learning methods to model complex, physical phenomena with a good accuracy when domain knowledge is used in the variable extraction. The XGBoost models are combined with SHAP (SHapley Additive exPlanations) approximations to provide a comprehensible decision support system for airport operators and pilots, which can contribute to safer and more economic operations of airport runways

    Aircraft Damage Classification by using Machine Learning Methods

    Get PDF
    Safety is the most significant factor that affected incidents (non-fatal) and accidents (fatal) in civil aviation history related to scheduled flights. In the history of scheduled flights, the total incident and accident number until 2022 is 1988. In this study, 677 of them are taken into consideration since 11 September 2001. The purpose of this study is to reveal the factors that can classify type of aircraft damages such as none, minor and substantial in all-time incidents and accidents. ML algorithms with different configurations are applied for the classification process. The RFE and PCA are used to find the most important factors that are effective on the classification. Four components are found with PCA as zone, weather, time, and history. The results of multinomial logistic regression and ANNs showed that the most important 5 features are latitude, wind speed, wind direction, year, and longitude to classify aircraft damage. Then, temperature, total number of injury passenger, and month factors comes with more than 50% importance. The managerial implication of the study shows that as time passes the number of substantial accidents has decreased due to increasing level of safety precautions in civil aviation
    corecore