445 research outputs found

    Offline Recognition of Malayalam and Kannada Handwritten Documents Using Deep Learning

    Get PDF
    For a variety of reasons, handwritten text can be digitalized. It is used in a variety of government entities, including banks, post offices, and archaeological departments. Handwriting recognition, on the other hand, is a difficult task as everyone has a different writing style. There are essentially two methods for handwritten recognition: a holistic and an analytic approach. The previous methods of handwriting recognition are time- consuming. However, as deep neural networks have progressed, the approach has become more straightforward than previous methods. Furthermore, the bulk of existing solutions are limited to a single language. To recognise multilanguage handwritten manuscripts offline, this work employs an analytic approach. It describes how to convert Malayalam and Kannada handwritten manuscripts into editable text. Lines are separated from the input document first. After that, word segmentation is performed. Finally, each word is broken down into individual characters. An artificial neural network is utilised for feature extraction and classification. After that, the result is converted to a word document

    Features and Algorithms for Visual Parsing of Handwritten Mathematical Expressions

    Get PDF
    Math expressions are an essential part of scientific documents. Handwritten math expressions recognition can benefit human-computer interaction especially in the education domain and is a critical part of document recognition and analysis. Parsing the spatial arrangement of symbols is an essential part of math expression recognition. A variety of parsing techniques have been developed during the past three decades, and fall into two groups. The first group is graph-based parsing. It selects a path or sub-graph which obeys some rule to form a possible interpretation for the given expression. The second group is grammar driven parsing. Grammars and related parameters are defined manually for different tasks. The time complexity of these two groups parsing is high, and they often impose some strict constraints to reduce the computation. The aim of this thesis is working towards building a straightforward and effective parser with as few constraints as possible. First, we propose using a line of sight graph for representing the layout of strokes and symbols in math expressions. It achieves higher F-score than other graph representations and reduces search space for parsing. Second, we modify the shape context feature with Parzen window density estimation. This feature set works well for symbol segmentation, symbol classification and symbol layout analysis. We get a higher symbol segmentation F-score than other systems on CROHME 2014 dataset. Finally, we develop a Maximum Spanning Tree (MST) based parser using Edmonds\u27 algorithm, which extracts an MST from the directed line of sight graph in two passes: first symbols are segmented, and then symbols and spatial relationship are labeled. The time complexity of our MST-based parsing is lower than the time complexity of CYK parsing with context-free grammars. Also, our MST-based parsing obtains higher structure rate and expression rate than CYK parsing when symbol segmentation is accurate. Correct structure means we get the structure of the symbol layout tree correct, even though the label of the edge in the symbol layout tree might be wrong. The performance of our math expression recognition system with MST-based parsing is competitive on CROHME 2012 and 2014 datasets. For future work, how to incorporate symbol classifier result and correct segmentation error in MST-based parsing needs more research

    Off-line Arabic Handwriting Recognition System Using Fast Wavelet Transform

    Get PDF
    In this research, off-line handwriting recognition system for Arabic alphabet is introduced. The system contains three main stages: preprocessing, segmentation and recognition stage. In the preprocessing stage, Radon transform was used in the design of algorithms for page, line and word skew correction as well as for word slant correction. In the segmentation stage, Hough transform approach was used for line extraction. For line to words and word to characters segmentation, a statistical method using mathematic representation of the lines and words binary image was used. Unlike most of current handwriting recognition system, our system simulates the human mechanism for image recognition, where images are encoded and saved in memory as groups according to their similarity to each other. Characters are decomposed into a coefficient vectors, using fast wavelet transform, then, vectors, that represent a character in different possible shapes, are saved as groups with one representative for each group. The recognition is achieved by comparing a vector of the character to be recognized with group representatives. Experiments showed that the proposed system is able to achieve the recognition task with 90.26% of accuracy. The system needs only 3.41 seconds a most to recognize a single character in a text of 15 lines where each line has 10 words on average

    Arbitrary Keyword Spotting in Handwritten Documents

    Get PDF
    Despite the existence of electronic media in today’s world, a considerable amount of written communications is in paper form such as books, bank cheques, contracts, etc. There is an increasing demand for the automation of information extraction, classification, search, and retrieval of documents. The goal of this research is to develop a complete methodology for the spotting of arbitrary keywords in handwritten document images. We propose a top-down approach to the spotting of keywords in document images. Our approach is composed of two major steps: segmentation and decision. In the former, we generate the word hypotheses. In the latter, we decide whether a generated word hypothesis is a specific keyword or not. We carry out the decision step through a two-level classification where first, we assign an input image to a keyword or non-keyword class; and then transcribe the image if it is passed as a keyword. By reducing the problem from the image domain to the text domain, we do not only address the search problem in handwritten documents, but also the classification and retrieval, without the need for the transcription of the whole document image. The main contribution of this thesis is the development of a generalized minimum edit distance for handwritten words, and to prove that this distance is equivalent to an Ergodic Hidden Markov Model (EHMM). To the best of our knowledge, this work is the first to present an exact 2D model for the temporal information in handwriting while satisfying practical constraints. Some other contributions of this research include: 1) removal of page margins based on corner detection in projection profiles; 2) removal of noise patterns in handwritten images using expectation maximization and fuzzy inference systems; 3) extraction of text lines based on fast Fourier-based steerable filtering; 4) segmentation of characters based on skeletal graphs; and 5) merging of broken characters based on graph partitioning. Our experiments with a benchmark database of handwritten English documents and a real-world collection of handwritten French documents indicate that, even without any word/document-level training, our results are comparable with two state-of-the-art word spotting systems for English and French documents
    • …
    corecore