152 research outputs found

    Belief rule-base expert system with multilayer tree structure for complex problems modeling

    Get PDF
    Belief rule-base (BRB) expert system is one of recognized and fast-growing approaches in the areas of complex problems modeling. However, the conventional BRB has to suffer from the combinatorial explosion problem since the number of rules in BRB expands exponentially with the number of attributes in complex problems, although many alternative techniques have been looked at with the purpose of downsizing BRB. Motivated by this challenge, in this paper, multilayer tree structure (MTS) is introduced for the first time to define hierarchical BRB, also known as MTS-BRB. MTS- BRB is able to overcome the combinatorial explosion problem of the conventional BRB. Thereafter, the additional modeling, inferencing, and learning procedures are proposed to create a self-organized MTS-BRB expert system. To demonstrate the development process and benefits of the MTS-BRB expert system, case studies including benchmark classification datasets and research and development (R&D) project risk assessment have been done. The comparative results showed that, in terms of modelling effectiveness and/or prediction accuracy, MTS-BRB expert system surpasses various existing, as well as traditional fuzzy system-related and machine learning-related methodologie

    Contributions to modeling with set-valued data: benefitting from undecided respondents

    Get PDF
    This dissertation develops a methodological framework and approaches to benefit from undecided survey participants, particularly undecided voters in pre-election polls. As choices can be seen as processes that - in stages - exclude alternatives until arriving at one final element, we argue that in pre-election polls undecided participants can most suitably be represented by the set of their viable options. This consideration set sampling, in contrast to the conventional neglection of the undecided, could reduce nonresponse and collects new and valuable information. We embed the resulting set-valued data in the framework of random sets, which allows for two different interpretations, and develop modeling methods for either one. The first interpretation is called ontic and views the set of options as an entity of its own that most accurately represents the position at the time of the poll, thus as a precise representation of something naturally imprecise. With this, new ways of structural analysis emerge as individuals pondering between particular parties can now be examined. We show how the underlying categorical data structure can be preserved in this formalization process for specific models and how popular methods for categorical data analysis can be broadly transferred. As the set contains the eventual choice, under the second interpretation, the set is seen as a coarse version of an underlying truth, which is called the epistemic view. This imprecise information of something actually precise can then be used to improve predictions or election forecasting. We developed several approaches and a framework of a factorized likelihood to utilize the set-valued information for forecasting. Amongst others, we developed methods addressing the complex uncertainty induced by the undecided, weighting the justifiability of assumptions with the conciseness of the results. To evaluate and apply our approaches, we conducted a pre-election poll for the German federal election of 2021 in cooperation with the polling institute Civey, for the first time regarding undecided voters in a set-valued manner. This provides us with the unique opportunity to demonstrate the advantages of the new approaches based on a state-of-the-art survey

    Multi-label Rule Learning

    Get PDF
    Research on multi-label classification is concerned with developing and evaluating algorithms that learn a predictive model for the automatic assignment of data points to a subset of predefined class labels. This is in contrast to traditional classification settings, where individual data points cannot be assigned to more than a single class. As many practical use cases demand a flexible categorization of data, where classes must not necessarily be mutually exclusive, multi-label classification has become an established topic of machine learning research. Nowadays, it is used for the assignment of keywords to text documents, the annotation of multimedia files, such as images, videos, or audio recordings, as well as for diverse applications in biology, chemistry, social network analysis, or marketing. During the past decade, increasing interest in the topic has resulted in a wide variety of different multi-label classification methods. Following the principles of supervised learning, they derive a model from labeled training data, which can afterward be used to obtain predictions for yet unseen data. Besides complex statistical methods, such as artificial neural networks, symbolic learning approaches have not only been shown to provide state-of-the-art performance in many applications but are also a common choice in safety-critical domains that demand human-interpretable and verifiable machine learning models. In particular, rule learning algorithms have a long history of active research in the scientific community. They are often argued to meet the requirements of interpretable machine learning due to the human-legible representation of learned knowledge in terms of logical statements. This work presents a modular framework for implementing multi-label rule learning methods. It does not only provide a unified view of existing rule-based approaches to multi-label classification, but also facilitates the development of new learning algorithms. Two novel instantiations of the framework are investigated to demonstrate its flexibility. Whereas the first one relies on traditional rule learning techniques and focuses on interpretability, the second one is based on a generalization of the gradient boosting framework and focuses on predictive performance rather than the simplicity of models. Motivated by the increasing demand for highly scalable learning algorithms that are capable of processing large amounts of training data, this work also includes an extensive discussion of algorithmic optimizations and approximation techniques for the efficient induction of rules. As the novel multi-label classification methods that are presented in this work can be viewed as instantiations of the same framework, they can both benefit from most of these principles. Their effectiveness and efficiency are compared to existing baselines experimentally

    Multispace & Multistructure. Neutrosophic Transdisciplinarity (100 Collected Papers of Sciences), Vol. IV

    Get PDF
    The fourth volume, in my book series of “Collected Papers”, includes 100 published and unpublished articles, notes, (preliminary) drafts containing just ideas to be further investigated, scientific souvenirs, scientific blogs, project proposals, small experiments, solved and unsolved problems and conjectures, updated or alternative versions of previous papers, short or long humanistic essays, letters to the editors - all collected in the previous three decades (1980-2010) – but most of them are from the last decade (2000-2010), some of them being lost and found, yet others are extended, diversified, improved versions. This is an eclectic tome of 800 pages with papers in various fields of sciences, alphabetically listed, such as: astronomy, biology, calculus, chemistry, computer programming codification, economics and business and politics, education and administration, game theory, geometry, graph theory, information fusion, neutrosophic logic and set, non-Euclidean geometry, number theory, paradoxes, philosophy of science, psychology, quantum physics, scientific research methods, and statistics. It was my preoccupation and collaboration as author, co-author, translator, or cotranslator, and editor with many scientists from around the world for long time. Many topics from this book are incipient and need to be expanded in future explorations

    Scalable Techniques for Behavioral Analysis and Forecasting

    Get PDF
    The ability to model, forecast, and analyze the behaviors of other agents has applications in many diverse contexts. For example, behavioral models can be used in multi-player games to forecast an opponent's next move, in economics to forecast a merger decision by a CEO, or in international politics to predict the behavior of a rival state or group. Such models can facilitate formulation of effective mitigating responses and provide a foundation for decision-support technologies. Behavioral modeling is a computationally challenging problem--real world data sets can contain on the order of 10^30,000 possible behaviors in any given situation. This work presents several scalable frameworks for modeling and forecasting agent behavior, particularly in the realm of international security dynamics. A probabilistic logic formalism for modeling and forecasting behavior is described, as well as distributed algorithms for efficient reasoning in this framework. To further cope with the scale of this problem, forecasting methods are also introduced that operate directly on time series data, rather than an intermediate behavioral model, to forecast actions and situations at some time in the future. Agent behavior can be adaptive, and in rare circumstances can deviate from the statistically "normal" past behavior. A system is also presented that can forecast when and how such behavioral changes will occur. These forecasting techniques, as well as any arbitrary time series forecasting approach, can be classified by a general axiomatic framework for forecasting in temporal databases. The knowledge gained from behavioral models and forecasts can be employed by decision-makers to develop effective response policies. An efficient framework is provided for identifying the optimal changes to the state of the world to elicit desired behaviors from another agent, balancing cost with likelihood of success. These modeling and analysis tools have also been incorporated into a prototype decision-support system and used in several case studies of real-world international security situations

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well

    Characterizing model uncertainty in ensemble learning

    Get PDF
    corecore